题目:
实现 int sqrt(int x) 函数。
计算并返回 x 的平方根,其中 x 是非负整数。
由于返回类型是整数,结果只保留整数的部分,小数部分将被舍去。
解析:
这题的解法用暴力解法是非常简单的。主要的麻烦在于如何解的更好,答案就是用牛顿迭代法。
下面这种方法可以很有效地求出根号 a的近似值:首先随便猜一个近似值 x,然后不断令 x 等于 x 和 a/x的平均数,迭代个六七次后 x 的值就已经相当精确了。
例如,我想求根号 2 等于多少。假如我猜测的结果为 4,虽然错的离谱,但你可以看到使用牛顿迭代法后这个值很快就趋近于根号 2 了:
( 4 + 2/ 4 ) / 2 = 2.25
( 2.25 + 2/ 2.25 ) / 2 = 1.56944…
( 1.56944…+ 2/1.56944…) / 2 = 1.42189…
( 1.42189…+ 2/1.42189…) / 2 = 1.41423…
….
还不理解的去百度一下牛顿迭代法。。。。
代码:
public int mySqrt(int x) {
if(x==0){
return 0;
}
double x0=x;
double c=x;
while(true){
double x1=(x0 + c/x0)/2;
if(Math.abs(x1-x0)<1e-7){
return (int)x1;
}
x0=x1;
}
}
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/sqrtx