算法之求x的平方根

题目:
实现 int sqrt(int x) 函数。
计算并返回 x 的平方根,其中 x 是非负整数。
由于返回类型是整数,结果只保留整数的部分,小数部分将被舍去。
在这里插入图片描述
解析:

这题的解法用暴力解法是非常简单的。主要的麻烦在于如何解的更好,答案就是用牛顿迭代法。

下面这种方法可以很有效地求出根号 a的近似值:首先随便猜一个近似值 x,然后不断令 x 等于 x 和 a/x的平均数,迭代个六七次后 x 的值就已经相当精确了。

例如,我想求根号 2 等于多少。假如我猜测的结果为 4,虽然错的离谱,但你可以看到使用牛顿迭代法后这个值很快就趋近于根号 2 了:

( 4 + 2/ 4 ) / 2 = 2.25
( 2.25 + 2/ 2.25 ) / 2 = 1.56944…
( 1.56944…+ 2/1.56944…) / 2 = 1.42189…
( 1.42189…+ 2/1.42189…) / 2 = 1.41423…
….


还不理解的去百度一下牛顿迭代法。。。。

代码:

 public int mySqrt(int x) { 
    if(x==0){
        return 0;
    }
    double x0=x;
    double c=x;
    while(true){
      double x1=(x0 + c/x0)/2;
       if(Math.abs(x1-x0)<1e-7){
           return (int)x1;
       }
       x0=x1;
    } 
    }

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/sqrtx

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值