01原题再现
[全国三卷文科2019·21]已知曲线C:y=x^2/2,D为直线y=-1/2上的动点,过D作C的两条切线,切点分别为A,B.
⑴证明:直线AB过定点;
⑵若以E(0,5/2)为圆心的圆与直线AB相切,且切点为线段 AB的中点,求该圆的方程。
图一
这道题是一个直线与圆锥曲线的题,该题共分为两问,这里两问都有一定的难度。
其中第一问是解答第二问的基础,需要根据第一问得出直线AB含字母的方程,这里的第一问如果解答不出,后面更是无法解答。
而该第一问是要证明直线AB过定点,且条件较少,想完全求出直线AB的方程不太可能,不过是求证直线AB过定点,不一定非要求出直线AB的完整方程,只要确定该方程的一部分即可。
虽然如此,但是使用常规方法也很难得出直线AB的部分方程。
所以这里使用了新方法去证明第一问,以及得出第二问需要的直线AB的部分方程——这种方法需要大家注意!
而第二问是需要借助向量的方法来解决,否则会因未知量多而无法解决,即使可解决也会带来“繁琐”的计算。
在这道题中,使用向量的方法,也充分地体现了向量的优势——有时使用向量的方向向量即可解决,从而减少了没有必要的未知量!
下面我们就一起看看具体的做法。
02第一问巧解
第一问可以根据斜率相等建立等量关系。
图二
第一步,根据导数公式得出过A,B的切线斜率。
因为抛物线的方程为y=x^2/2,则一次导数y'=x。
设A(x1,y1),B(x2,y2),则过A点的切线DA的斜率为k1=x1;过B点的切线DB的斜率为k2=x2.
第二步,根据两点得出过A,B的切线斜率。
因为D点在y=-1/2动直线上,则可设D(t,-1/2)。
根据两点坐标得出直线DA的斜率:k1=(y1+1/2)/(x1-t).
由第一步可知,k1=x1,则有(y1+1/2)/(x1-t)=x1,整理得到
2tx1-2y1+1=0。
根据两点坐标得出直线DB的斜率:k2=(y2+1/2)/(x2-t).
由第一问可知,k2=x2,则有(y2+1/2)/(x2-t)=x2,整理得到
2tx2-2y2+1=0。
第三步,得出直线AB的方程。
由2tx1-2y1+1=0和2tx2-2y2+1=0可知,点A,B都是方程2tx-2y+1=0地解。
根据两点确定一条直线的原则,则有直线AB的方程为2tx-2y+1=0。
第四步,得出直线AB过定点。
令x=0,则y=1/2.
——之所以令x=0,是因为当x=0时,无论t为何值时2tx的数值不变。
所以直线AB过定点(0,1/2)。
03向量在第二问中的秒用
第二问分析:
第二问给出的一个已知圆心E(0,5/2)的圆与直线AB:2tx-2y+1=0相切,而切点恰好是直线AB的中点,求此时的圆E的方程。
要想求出该圆的方程,就是要求出该圆的半径。
这里的圆心已经给出主要就是求直线AB的中点坐标,再根据两点间距离公式得出该圆的半径。
由于直线AB中存在字母t,经求解直线AB的中点也是带有字母的t的,也就是得出直线AB的中点依然是未知的。
那如何建立关于t的等式得出t的值呢?
这里常规的方式是很难建立等量关系求出t的值,所以要使用向量的方向性来解答——即两个向量垂直,只需要两个向量的方向向量垂直即可。
第二问解题步骤:
第一步,求出直线AB的中点坐标——用字母t表示。
由第一问可知,直线AB的方程为y=tx+1/2。
将直线AB的方程与抛物线的方程y=x^2/2联立,则有
x^2-2tx-1=0.
根据韦达定理,则有x1+x2=2t,x1x2=-1。
因为y=tx+1/2,则有y1+y2=t(x1+x2)+1=2t^2+1。
设直线AB的中点为M(x0,y0),根据中点坐标运算,则有
x0=(x1+x2)/2=t,y0=(y1+y2)/2=t^2+1/2.
所以直线AB的中点坐标M(t,t^2+1/2)。
第二步,根据向量的方向向量求出t的数值。
图三
因为AB是圆E的切线,所以连接EM,则EM⊥AB,即向量EM·向量AB=0.
根据向量坐标运算,则有
向量EM=(t,t^2+1/2)-(0,5/2)=(t,t^2-2);
向量AB=(x2,y2)-(x1,y1)=(x2-x1,y2-y1)。
注:这里向量AB的坐标含有的未知量较多,所以这一步将向量AB用相同方向的向量来表示,因为向量EM和向量AB同一个方向的向量也是垂直的。
向量AB=(x2-x1)(1,t),则向量AB可用向量(1,t)来代替,因为它们的方向相同,也满足向量EM与向量(1,t)垂直。
注:根据题意,x1≠x2。
则有向量EM·向量(1,t)=(t,t^2-2)·(1,t)=0.
整理得到t·(t^2-1)=0,解得到t=0或者t=±1.
第三步,根据t的值得出圆E的方程。
当t=0时,M点坐标为(0,1/2),根据两点距离公式,则有|EM|=2,则此时圆E的方程为x^2+(y-5/2)^2=4;
当t=±1时,M点坐标为(1,3/2)和(-1,3/2),根据两点距离公式,则有|EM|=√2,此时圆E的方程为x^2+(y-5/2)^2=2.
综上所述,该圆的方程为x^2+(y-5/2)^2=4或x^2+(y-5/2)^2=2。
04总结
上述的题中需要注意的点有:
第一,第一问方法的使用;
第二,第二问中求参数t的过程,根据相同向量具有相同的方向性,将向量AB更换成向量(1,t),从而减少不必要的已知,建立关于t的等式。
相关文章:
高中数学:隐形圆在三种情况下的使用,资料都没的重点你要错过?
高中:两条直线位置关系类型题大全,三大突破点是解这类题的关键
求证动圆过定点?这样转化大题变送分题!向量在综合题中的巧用
中点在抛物线中的巧用,带你简化计算,节省时间,这就是差距来源
向量在椭圆上的巧妙构建,充分体现向量和椭圆的性质,神奇的简化
#高中数学#