【SLAM十四讲--第六讲】非线性优化

本文详细介绍了SLAM问题的状态估计背景,强调了非线性优化在解决SLAM问题中的核心地位。通过数学推导,阐述了如何在已知运动和观测数据下,利用非线性优化技术求解相机位姿和路标点的世界坐标。同时,提供了手写笔记PDF供读者下载,以便进一步学习和理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


《SLAM十四讲》理论部分专栏
《SLAM十四讲》实践部分专栏


一、引入

在这里插入图片描述

  经过前几讲的学习,我们知道了SLAM的数学表示方式(如上图),那怎么求解这个数学问题呢?这是
一个什么问题呢?我们来理一理。

  我们已知的是:运动方程、观测方程、运动数据、图片数据;

  我们求解目标的是:相机各个时刻的位姿和路标点的世界坐标。

  概括起来就是:在已知SLAM模型的情况下,通过带噪声的数据z和u推断位姿x和地图y的概率分布,这是一个状态估计问题。

  状态估计问题如何求解呢?

请添加图片描述

  本讲内容针对非线性优化进行展开介绍。

二、非线性优化

  数学推导比较多,这里放手写笔记

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
下载手写笔记的pdf

三、知识联系的总结

  一张图总结一下本讲知识间的联系。

请添加图片描述


  看完文章觉得有用的的话,可以点赞、收藏、关注、订阅专栏嘛,你的肯定是我最大的动力!!!😘🌹

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值