【SLAM十四讲--第四讲之李群与李代数】理论知识部分

SLAM十四讲 - - 第四讲之李群与李代数1

《SLAM十四讲》系列文章链接
SLAM十四讲 - - 第三讲之可视化演示程序逐行讲解


纯纯新手一个,记录自己学习后的理解,欢迎大家交流讨论。


一、为什么要学李群与李代数?

  在SLAM中相机的位姿是未知的,当我们采集到了观测数据后,我们要解决“什么样的相机位姿最符合当前的观测数据”这样一个问题。说人话就是:有了一堆相机观测的数据,如何准确地(最小化误差)计算出相机的位姿。一种典型的方法是:把这个问题转换成优化问题,求解最优的旋转矩阵 R R R和平移矩阵 t t t,使得观测误差最小化。
  求解旋转矩阵 R R R和平移矩阵 t t t和我们李群与李代数有什么关系呢?是这样的,在处理优化问题时,我们尝尝会构建一个损失函数(也就是一个误差函数),在最小化这个损失函数的时候,由于旋转矩阵自身是带约束的(正交矩阵:矩阵转置=矩阵的逆),如果直接使用旋转矩阵 R R R作为优化变量的话,会引入额外的约束,使优化变的困难。我们可以通过李群与李代数之间的转换关系,把位姿估计问题转化为无约束的优化问题,简化求解的方式。

二、李群与李代数

1.李群

  群(group)是一种集合一种运算。我们把集合记作A,运算记作·,那么群可以记作G=(A,·)。群需要满足以下条件:

   1. 封 闭 性 : ∀ a 1 , a 2 ∈ A , a 1 ⋅ a 2 ∈ A . 1. 封闭性: \quad \forall a_{1}, a_{2} \in A, \quad a_{1} \cdot a_{2} \in A . 1.:a1,a2A,a1a2A.
   2. 结 合 律 : ∀ a 1 , a 2 , a 3 ∈ A , ( a 1 ⋅ a 2 ) ⋅ a 3 = a 1 ⋅ ( a 2 ⋅ a 3 ) . 2. 结合律: \quad \forall a_{1}, a_{2}, a_{3} \in A, \quad\left(a_{1} \cdot a_{2}\right) \cdot a_{3}=a_{1} \cdot\left(a_{2} \cdot a_{3}\right) . 2.:a1,a2,a3A,(a1a2)a3=a1(a2a3).
   3. 么 元 : ∃ a 0 ∈ A , s . t . ∀ a ∈ A , a 0 ⋅ a = a ⋅ a 0 = a . 3. 么元: \quad \quad \exists a_{0} \in A, \quad s.t. \quad \forall a \in A, \quad a_{0} \cdot a=a \cdot a_{0}=a . 3.:a0A,s.t.aA,a0a=aa0=a.
   4. 逆 : ∀ a ∈ A , ∃ a − 1 ∈ A , s . t . a ⋅ a − 1 = a 0 . 4. 逆: \quad \quad\quad \forall a \in A, \quad \exists a^{-1} \in A, \quad s.t. \quad a \cdot a^{-1}=a_{0} . 4.:aA,a1A,s.t.aa1=a0.

  在第三讲中我们学习到三维旋转矩阵构成了特殊正交群SO(3),变换矩阵构成了特殊欧式群SE(3),他们写起来就像这样:
S O ( 3 ) = { R ∈ R 3 × 3 ∣ R R T = I , det ⁡ ( R ) = 1 } ,   S E ( 3 ) = { T = [ R t 0 T 1 ] ∈ R 4 × 4 ∣ R ∈ S O ( 3 ) , t ∈ R 3 } . \begin{array}{l} \mathrm{SO}(3)=\left\{\boldsymbol{R} \in \mathbb{R}^{3 \times 3} \mid \boldsymbol{R} \boldsymbol{R}^{\mathrm{T}}=\boldsymbol{I}, \operatorname{det}(\boldsymbol{R})=1\right\}, \\~\\ \mathrm{SE}(3)=\left\{\boldsymbol{T}=\left[\begin{array}{cc} \boldsymbol{R} & \boldsymbol{t} \\ \mathbf{0}^{\mathrm{T}} & 1 \end{array}\right] \in \mathbb{R}^{4 \times 4} \mid \boldsymbol{R} \in \mathrm{SO}(3), \boldsymbol{t} \in \mathbb{R}^{3}\right\} . \end{array} SO(3)={RR3×3RRT=I,det(R)=1}, SE(3)={T=[R0Tt1]R4×4RSO(3),tR3}.  不难观察到SO(3)和SE(3)对矩阵加法是不封闭的,而对矩阵乘法是封闭的,也即:
R 1 + R 2 ∉ S O ( 3 ) , T 1 + T 2 ∉ S E ( 3 )   R 1 R 2 ∈ S O ( 3 ) , T 1 T 2 ∈ S E ( 3 ) \boldsymbol{R}_{1}+\boldsymbol{R}_{2} \notin \mathrm{SO}(3), \quad \boldsymbol{T}_{1}+\boldsymbol{T}_{2} \notin \mathrm{SE}(3)\\ ~\\ \boldsymbol{R}_{1} \boldsymbol{R}_{2} \in \mathrm{SO}(3), \quad \boldsymbol{T}_{1} \boldsymbol{T}_{2} \in \mathrm{SE}(3) R1+R2/SO(3),T1+T2/SE(3) R1R2SO(3),T1T2SE(3)  所以严格的说,旋转矩阵和矩阵乘法构成特殊正交群SO(n),变换矩阵和矩阵乘法构成特殊欧式群SE(3)。
  群结构保证了在群上的运算具有良好的运算。其中,李群指的是具有连续(光滑)性质的群。直观的来说,刚体能够在空间上连续的运动,所以我们说SO(n)和SE(3)是李群

2.李代数

2.1引出李代数

  这部分公式敲起来麻烦,这里就直接贴上手写的推导。
在这里插入图片描述
  简单的来说,就是经过简单推导可以发现旋转矩阵 R R R有一个性质: R ˙ ( t ) R ( t ) T \dot{\boldsymbol{R}}(t) \boldsymbol{R}(t)^{\mathrm{T}} R˙(t)R(t)T是一个反对称矩阵,记作:
R ˙ ( t ) R ( t ) T = ϕ ( t ) ∧ \dot{\boldsymbol{R}}(t) \boldsymbol{R}(t)^{\mathrm{T}}=\boldsymbol{\phi}(t)^{\wedge} R˙(t)R(t)T=ϕ(t)  其中, ϕ ( t ) \phi(t) ϕ(t)是一个向量,符号^是第三讲中学习的将向量转换为反对称矩阵的符号。
  再经过一阶泰勒展开和简单的化简我们得到:
R ˙ ( t ) = ϕ 0 ∧ R ( t ) \dot{\boldsymbol{R}}(t)=\phi_{0}^{\wedge} \boldsymbol{R}(t) R˙(t)=ϕ0R(t)  可以发现,在 t t t时刻附近,每次对矩阵进行求导只需要左乘一个 ϕ \phi ϕ^。这说明向量 ϕ \phi ϕ反映了 R R R的局部导数性质,所以也称它在SO(3)的正切空间上。
  根据初始值和微分方程求解可以得到: R ( t ) = exp ⁡ ( ϕ 0 ∧ t ) \boldsymbol{R}(t)=\exp \left(\phi_{0}^{\wedge} t\right) R(t)=exp(ϕ0t)  到这里,我们不得不思考两个问题:

   1. 给定某时刻的矩阵 R R R我们就能计算对应的向量 ϕ \phi ϕ,那么 ϕ \phi ϕ向量有什么含义呢? ϕ \phi ϕ正是对应对应到SO(3)上的李代数 s o ( 3 ) \mathfrak{s o}(3) so(3)
   2. 给定某时刻的向量 ϕ \phi ϕ,矩阵指数 exp ⁡ ( ϕ ∧ ) \exp \left(\phi^{\wedge}\right) exp(ϕ)如何计算呢(也就是计算矩阵 R R R)?反过来,给定 R R R时是否有相反的运算来计算向量 ϕ \phi ϕ这正是李群与李代数之间的指数和对数映射。

2.2李代数的定义

  每个李群都有与之对应的李代数,李代数描述了李群的局部性质,准确的说,是单位元附近的正切空间。李代数的数学定义如下:
  李代数由一个集合 V \mathbb{V} V、一个数域 F \mathbb{F} F和一个二元运算 [ , ] 组 成 。 如 果 它 们 满 足 以 下 几 条 性 质 , 则 称 [,]组成。如果它们满足以下几条性质,则 称 [,] ( V , F , [ , ] ) (\mathbb{V},\mathbb{F},[,]) (V,F,[,])为一个李代数, 记作 g \mathfrak{g} g

   1. 封 闭 性 ∀ X , Y ∈ V , [ X , Y ] ∈ V . 1. 封闭性 \quad \forall \boldsymbol{X}, \boldsymbol{Y} \in \mathbb{V},[\boldsymbol{X}, \boldsymbol{Y}] \in \mathbb{V} . 1.X,YV,[X,Y]V.
   2. 双 线 性 ∀ X , Y , Z ∈ V , a , b ∈ F , 有 [ a X + b Y , Z ] = a [ X , Z ] + b [ Y , Z ] , [ Z , a X + b Y ] = a [ Z , X ] + b [ Z , Y ] . 2. 双线性 \quad \forall \boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{Z} \in \mathbb{V}, a, b \in \mathbb{F} , 有 [a \boldsymbol{X}+b \boldsymbol{Y}, \boldsymbol{Z}]=a[\boldsymbol{X}, \boldsymbol{Z}]+b[\boldsymbol{Y}, \boldsymbol{Z}], \quad[\boldsymbol{Z}, a \boldsymbol{X}+b \boldsymbol{Y}]=a[\boldsymbol{Z}, \boldsymbol{X}]+b[\boldsymbol{Z}, \boldsymbol{Y}] . 2.线X,Y,ZV,a,bF,[aX+bY,Z]=a[X,Z]+b[Y,Z],[Z,aX+bY]=a[Z,X]+b[Z,Y].
   3. 自 反 性 ∀ X ∈ V , [ X , X ] = 0. 3. 自反性 \quad \forall \boldsymbol{X} \in \mathbb{V},[\boldsymbol{X}, \boldsymbol{X}]=\mathbf{0} . 3.XV,[X,X]=0.
   4. 雅 可 比 等 价 ∀ X , Y , Z ∈ V , [ X , [ Y , Z ] ] + [ Z , [ X , Y ] ] + [ Y , [ Z , X ] ] = 0. 4. 雅可比等价 \quad \forall \boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{Z} \in \mathbb{V},[\boldsymbol{X},[\boldsymbol{Y}, \boldsymbol{Z}]]+[\boldsymbol{Z},[\boldsymbol{X}, \boldsymbol{Y}]]+[\boldsymbol{Y},[\boldsymbol{Z}, \boldsymbol{X}]]=\mathbf{0} . 4.X,Y,ZV,[X,[Y,Z]]+[Z,[X,Y]]+[Y,[Z,X]]=0.

  其中二元运算符称为李括号。举个例子,三维向量 R 3 \mathbb{R}^{3} R3上定义的叉乘 × \times ×是一种李括号(证明过程),因此 g = ( R 3 × 3 , R , × ) \mathfrak{g}=(\mathbb{R}^{3\times3},\mathbb{R},\times) g=(R3×3,R,×)构成了一个李代数。

2.2.1 李代数 s o ( 3 ) \mathfrak{so}(3) so(3)

  之前提到的 ϕ \phi ϕ,事实上是一种李代数。SO(3)对应的李代数是定义在 R 3 \mathbb{R}^{3} R3上的向量,记作 ϕ \phi ϕ。 根据前面的推导, 每个 ϕ \phi ϕ都可以生成一个反对称矩阵: Φ = ϕ ∧ = [ 0 − ϕ 3 ϕ 2 ϕ 3 0 − ϕ 1 − ϕ 2 ϕ 1 0 ] ∈ R 3 × 3 \boldsymbol{\Phi}=\phi^{\wedge}=\left[\begin{array}{ccc} 0 & -\phi_{3} & \phi_{2} \\ \phi_{3} & 0 & -\phi_{1} \\ -\phi_{2} & \phi_{1} & 0 \end{array}\right] \in \mathbb{R}^{3 \times 3} Φ=ϕ=0ϕ3ϕ2ϕ30ϕ1ϕ2ϕ10R3×3  在此定义下,两个向量 ϕ 1 \phi_{1} ϕ1 ϕ 2 \phi_{2} ϕ2的李括号为:(证明过程)
[ ϕ 1 , ϕ 2 ] = ( Φ 1 Φ 2 − Φ 2 Φ 1 ) ∨ \left[\phi_{1}, \phi_{2}\right]=\left(\boldsymbol{\Phi}_{1} \boldsymbol{\Phi}_{2}-\boldsymbol{\Phi}_{2} \boldsymbol{\Phi}_{1}\right)^{\vee} [ϕ1,ϕ2]=(Φ1Φ2Φ2Φ1)  由于向量 ϕ \phi ϕ与反对称矩阵是一一对应的 ,在不引起歧义的清况下,就说 s o ( 3 ) \mathfrak{so}(3) so(3)的元素是三维向量或者三维反对称矩阵,不加区别:
s o = { ϕ ∈ R 3 , Φ = ϕ ∧ ∈ R 3 × 3 } \mathfrak{so}=\left\{\phi \in \mathbb{R}^{3}, \Phi=\phi^{\wedge} \in \mathbb{R}^{3 \times 3}\right\} so={ϕR3,Φ=ϕR3×3}
  总结来说, s o ( 3 ) \mathfrak{so}(3) so(3)的内容是一个由三维向量组成的集合,每个向量对应一个反对称矩阵, 可以用于表达旋转矩阵的导数。它与SO(3)的关系由指数映射给定(具体计算第三节中说): R = exp ⁡ ( ϕ ∧ ) \boldsymbol{R}=\exp \left(\phi_{}^{\wedge}\right) R=exp(ϕ)

2.2.2 李代数 s e ( 3 ) \mathfrak{se}(3) se(3)

  与之前类似,SE(3)也有对应的李代数 s e ( 3 ) \mathfrak{se}(3) se(3),位于 R 6 \mathbb{R}^{6} R6空间,
s e ( 3 ) = { ξ = [ ρ ϕ ] ∈ R 6 , ρ ∈ R 3 , ϕ ∈ s o ( 3 ) , ξ ∧ = [ ϕ ∧ ρ 0 T 0 ] ∈ R 4 × 4 } \mathfrak{s e}(3)=\left\{\xi=\left[\begin{array}{l} \rho \\ \phi \end{array}\right] \in \mathbb{R}^{6}, \rho \in \mathbb{R}^{3}, \phi \in \mathfrak{s o}(3), \xi^{\wedge}=\left[\begin{array}{ll} \phi^{\wedge} & \rho \\ 0^{\mathrm{T}} & 0 \end{array}\right] \in \mathbb{R}^{4 \times 4}\right\} se(3)={ξ=[ρϕ]R6,ρR3,ϕso(3),ξ=[ϕ0Tρ0]R4×4}   s e ( 3 ) \mathfrak{se}(3) se(3)中元素记作 ξ \xi ξ,是一个六维向量前三维为平移(但含义与变换矩阵中的平移不同,分析见后),记作 ρ \rho ρ后三维为旋转,记作 ϕ \phi ϕ,实质上是 s o ( 3 ) \mathfrak{so}(3) so(3)元素。^符号进行简单的拓展,表示将一个六维向最转换成四维矩阵:
ξ ∧ = [ ϕ ∧ ρ 0 T 0 ] ∈ R 4 × 4 \xi^{\wedge}=\left[\begin{array}{ll} \phi^{\wedge} & \rho \\ 0^{\mathrm{T}} & 0 \end{array}\right] \in \mathbb{R}^{4 \times 4} ξ=[ϕ0Tρ0]R4×4  类似的,两个向量 ξ 1 \xi_{1} ξ1 ξ 2 \xi_{2} ξ2的李括号为: [ ξ 1 , ξ 2 ] = ( ξ 1 ∧ ξ 2 ∧ − ξ 2 ∧ ξ 1 ∧ ) ∨ \left[\boldsymbol{\xi}_{1}, \boldsymbol{\xi}_{2}\right]=\left(\boldsymbol{\xi}_{1}^{\wedge} \boldsymbol{\xi}_{2}^{\wedge}-\boldsymbol{\xi}_{2}^{\wedge} \boldsymbol{\xi}_{1}^{\wedge}\right)^{\vee} [ξ1,ξ2]=(ξ1ξ2ξ2ξ1)

3.指数与对数映射

  矩阵指数问题,在李群和李代数中称为指数映射。同样的,这里面的公式比较琐碎,这里只放简单的框架性推导,其中涉及的结论性公式的证明过程见此链接

3.1 SO(3)与 s o ( 3 ) \mathfrak{so}(3) so(3)

在这里插入图片描述

3.2 SE(3)与 s e ( 3 ) \mathfrak{se}(3) se(3)

在这里插入图片描述
  如果不想看推导过程,只要能够看懂带图就行。这个图总结的非常全面!高博真是太厉害了!
在这里插入图片描述

4.李代数求导与扰动模型

4.1 基础

  前面我们说:我们可以通过李群与李代数之间的转换关系,把位姿估计问题转化为无约束的优化问题,简化求解的方式。而在优化过程中,对损失函数进行求导是非常必要的(第6讲会介绍)。求导过程中的复合求导不可避免的要处理矩阵乘法,那么当在 SO(3) 中完成两个矩阵乘法时,李代数 s o ( 3 ) \mathfrak{so}(3) so(3)发生了什么改变呢?
  这里直接给出结论,两个李代数指数映射的由Baker-Campbell­Hausdorff公式(BCH公式)给出。老规矩,直接上手写的:
在这里插入图片描述
  推导中,左乘BCH近似雅可比 J l \boldsymbol{J}_{l} Jl形式:
J l = J = sin ⁡ θ θ I + ( 1 − sin ⁡ θ θ ) a a T + 1 − cos ⁡ θ θ a ∧ \boldsymbol{J}_{l}=\boldsymbol{J}=\frac{\sin \theta}{\theta} \boldsymbol{I}+\left(1-\frac{\sin \theta}{\theta}\right) \boldsymbol{a} \boldsymbol{a}^{\mathrm{T}}+\frac{1-\cos \theta}{\theta} \boldsymbol{a}^{\wedge} Jl=J=θsinθI+(1θsinθ)aaT+θ1cosθa  它的逆为: J l − 1 = θ 2 cot ⁡ θ 2 I + ( 1 − θ 2 cot ⁡ θ 2 ) a a T − θ 2 a ∧ \boldsymbol{J}_{l}^{-1}=\frac{\theta}{2} \cot \frac{\theta}{2} \boldsymbol{I}+\left(1-\frac{\theta}{2} \cot \frac{\theta}{2}\right) \boldsymbol{a} \boldsymbol{a}^{\mathrm{T}}-\frac{\boldsymbol{\theta}}{2} \boldsymbol{a}^{\wedge} Jl1=2θcot2θI+(12θcot2θ)aaT2θa  右乘雅可比仅需要对自变量取负号即可: J r ( ϕ ) = J l ( − ϕ ) \boldsymbol{J}_{r}(\boldsymbol{\phi})=\boldsymbol{J}_{l}(-\boldsymbol{\phi}) Jr(ϕ)=Jl(ϕ)
  对于李代数 s e ( 3 ) \mathfrak{se}(3) se(3),也有近似的BCH公式,由于其雅克比矩阵形式复杂,实际中未使用,所以跳过。

4.2 李代数导数与扰动模型

  下面来讨论一个带有李代数的函数,以及关于该李代数求导的问题。直接上手写笔记。
Q,shadow_50,text_Q1NETiBA5LiA5LiH5bCP5pe2U0xBTQ==,size_16,color_FFFFFF,t_70,g_se,x_16)
  按照思路一:李代数求导,推导过程见此链接
在这里插入图片描述
  按照思路二:扰动模型(左乘),推导过程见此链接
在这里插入图片描述
  SE(3)上的李代数求导直接给结论,推导过程见此链接
在这里插入图片描述

  • 3
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
### 回答1: 《视觉SLAM十四》第三章主要介绍了视觉SLAM中的关键技术——特征提取和描述子。本章首先介绍了特征点的概念和特征点的选择原则。特征点即图像中具有鲁棒性和区分度的点,可以通过对其进行检测和描述来进行特征匹配和跟踪。在进行特征提取时,作者介绍了常见的特征检测算法,如Harris角点检测、SIFT和SURF算法等,并对其进行了比较和分析。 接着,本章详细阐述了特征描述子的概念和作用。特征描述子是对特征点周围区域的图像信息进行编码,以实现特征匹配和跟踪。常见的特征描述子包括SIFT、SURF和ORB等。作者从描述子的表示形式、计算方式和匹配方法等方面进行了介绍,并对它们进行了比较和评价。同时,还提到了基于二进制描述子的方法,如BRIEF、BRISK和FREAK等。 在特征匹配方面,本章介绍了特征描述子匹配的基本原理和流程。以基于特征点的视觉SLAM为例,作者详细解释了特征点的匹配过程,包括特征点的选择、特征点描述子匹配和筛选等步骤。并介绍了如何通过验证特征点的三角化和PnP求解来估计相机的位姿。 此外,本章还介绍了一些特定场景下的特征点选择和提取策略,如动态环境下的特征点追踪和关键帧选择等。 综上所述,《视觉SLAM十四》第三章主要介绍了特征提取和描述子在视觉SLAM中的重要性和应用。通过对特征点的检测和描述,可以实现特征匹配和跟踪,为后续的相机位姿估计和建图提供基础。该章内容详细且通俗易懂,对于学习和理解视觉SLAM有着重要的指导作用。 ### 回答2: 《视觉SLAM十四-Ch3》主要介绍了视觉SLAM(同时定位与建图)技术的基本原理和实现方法。本章主要涵盖了三维几何表示和变换、相机模型和相机姿态以及特征提取与匹配等内容。 首先,本章介绍了三维几何表示和变换的概念。通过介绍欧氏空间中的点、向量和坐标变换,深入解释了相机在三维空间中的位置和朝向的表示方式。同时,引入了齐次坐标和投影矩阵的概念,为后续的相机模型和姿态估计打下了基础。 其次,本章详细解了相机模型和相机姿态的原理与应用。其中,介绍了针孔相机模型,分析了图像坐标和相机坐标之间的映射关系。通过投影矩阵的推导,给出了透视投影和仿射投影的公式,并解释了相机焦距和主点的含义。此外,还介绍了如何通过计算相机的外参矩阵来估计相机的姿态,以及如何将图像坐标转换为相机坐标。 最后,本章介绍了特征提取与匹配的技术。首先,介绍了角点和边缘点的概念,以及如何利用差分和梯度计算来检测图像中的角点和边缘点。然后,介绍了如何通过特征描述符来表示图像中的特征点,并通过特征匹配算法找到两幅图像之间的对应关系。特征提取与匹配是视觉SLAM中非常重要的步骤,对于后续的相机定位和建图至关重要。 综上所述,《视觉SLAM十四-Ch3》通过系统地介绍了视觉SLAM技术的基本概念和实现方法,包括三维几何表示和变换、相机模型和相机姿态的原理与应用,以及特征提取与匹配的技术。这些内容为读者深入理解和掌握SLAM技术提供了很好的基础。 ### 回答3: 视觉SLAM(Simultaneous Localization and Mapping)是一种通过计算机视觉技术,实现机器智能的同时实时定位和地图构建的方法。在《视觉SLAM十四》第三中,主要介绍了视觉SLAM的基本概念和关键技术。 首先,解了视觉SLAM的理论基础,包括自我运动估计和地图构建两个部分。自我运动估计是通过相邻帧之间的视觉信息,计算相机在三维空间中的运动,从而实现机器的实时定位;地图构建是通过对场景中特征点的观测和跟踪,建立起一个三维空间中的地图。这两个过程相互影响,通过不断迭代优化,实现高精度的定位和地图构建。 接着,解了基于特征的视觉SLAM算法。特征提取与描述是建立视觉SLAM系统的关键步骤,通过提取场景中的特征点,并为其生成描述子,来实现特征点的匹配和跟踪。同时,还介绍了一些常用的特征点提取和匹配算法,如FAST、SIFT等。 在SLAM框架方面,本节还介绍了基于视觉的前端和后端优化。前端主要负责实时的特征跟踪和估计相机运动,后端则是通过优化技术,对前端输出的轨迹和地图进行优化求解,从而提高系统的精度和鲁棒性。 最后,本节提到了几个视觉SLAM的应用场景,如自主导航、增强现实等。这些应用对于实时高精度的定位和地图建立都有着很高的要求,因此,视觉SLAM的技术在这些领域有着广泛的应用前景。 总的来说,《视觉SLAM十四》第三对视觉SLAM的基本概念和关键技术进行了系统的介绍。理论基础、特征提取与描述、SLAM框架和应用场景等方面的内容都给出了详细的解释和案例,有助于读者更好地理解和应用视觉SLAM技术。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值