一、缺陷检测任务背景及意义
工业制造过程中,焊接缺陷和表面划痕是影响产品质量的关键因素。及时且准确地检测缺陷不仅能提升产品质量,还能降低生产成本和安全隐患。传统检测多依赖人工,效率低且主观差异大,深度学习尤其是目标检测技术的兴起为缺陷自动化检测提供了有效工具。
YOLO(You Only Look Once)系列作为实时目标检测的经典代表,因其高准确率和快速推理优势被广泛应用于工业检测中。YOLOv8是最新版本,融合了最新架构优化,精度和速度都有显著提升,非常适合工业缺陷检测任务。
二、YOLOv8简介
YOLOv8是Ultralytics发布的最新YOLO模型,支持多种任务(目标检测、实例分割等),具有以下优势:
- 更高准确率
- 更快推理速度
- 支持PyTorch及ONNX导出,易于部署
- 简单易用的训练接口
- 支持各种硬件加速
本博客将基于Ultralytics YOLOv8开源库,搭建缺陷检测模型。
三、缺陷检测数据集介绍及参考推荐
工业缺陷检测常用数据集包括:
- NEU-CLS:焊接缺陷分类数据集