【机器学习入门系列】—— 数学基础(一)

前言

本人最近整理了一下研究生期间学习内容,为了帮助更多考上研的小伙伴,这里对所学内容进行了一些整理,希望本专栏能够帮助更多的研究牲们更好的打工

本期内容:高等数学基础部分

学前提示:

  1. 机器学习这边的数学部分,只需要了解,理解即可,计算部分都是交给代码去实现的。所以考研的小伙伴不要看这里的数学。不过为了理解更加透彻, 本系列会引用一些考研教材的数学部分进行讲解。
  2. 纯理论的部分,看着会很枯燥,不过学习就是这样,不管学不学,知识点永远在那里,卷就是要比其他人更能看得进去枯燥无味的东西

博主准备了一份自己踩坑经历过的资料,已经将其整理完毕,如果想更深入了解机器学习的学习路线,可以关注公众号【点头人工智能】回复暗号【我不是卦神】即可获得
在这里插入图片描述


一、函数

设变量x的取值范围为D,若对任意x(属于D范围内的),按照某种对应管子总有唯一确定的值y与x对应,就称y是x的函数,记为
y = f ( x ) y=f(x) y=f(x)

函数的一些性质

  1. 有界性 设 y = f ( x ) ( x ∈ D ) , 若存在 M > 0 , 对任意的 x ∈ D , 总有 ∣ f ( x ) ∣ ≤ M , 称函数 f ( x ) 在 D 上有界 设y=f(x)(x\in D), 若存在M>0, 对任意的x\in D, 总有|f(x)|\le M, 称函数f(x)在D上有界 y=f(x)(xD),若存在M>0,对任意的xD,总有f(x)M,称函数f(x)D上有界
    在某个区间上,函数值总小于某一个值,就是一个有界函数
  2. 单调性。对于某个区间内的任意两个值,若x的值的大小关系和对应函数值的大小关系一致,就是单调递增,反之单调递减 若对任意的 x 1 , x 2 ∈ D , 且 x 1 < x 2 , 总有 f ( x 1 ) < f ( x 2 ) , 则单调递增 若对任意的x_{1},x_{2}\in D, 且x_{1}<x_{2}, 总有f(x_{1})<f(x_{2}), 则单调递增 若对任意的x1,x2D,x1<x2,总有f(x1)<f(x2),则单调递增 若对任意的 x 1 , x 2 ∈ D , 且 x 1 < x 2 , 总有 f ( x 1 ) > f ( x 2 ) , 则单调递减 若对任意的x_{1},x_{2}\in D, 且x_{1}<x_{2}, 总有f(x_{1})>f(x_{2}), 则单调递减 若对任意的x1,x2D,x1<x2,总有f(x1)>f(x2),则单调递减
  3. 奇偶性。关于原点对称的函数为奇函数,关于y轴对称的为偶函数。 若 f ( − x ) = − f ( x ) , 为奇函数 若f(-x)=-f(x), 为奇函数 f(x)=f(x),为奇函数 若 f ( − x ) = f ( x ) , 为偶函数 若f(-x)=f(x), 为偶函数 f(x)=f(x),为偶函数

二、极限

定义: 若对任意的 ϵ > 0 , 存在 N > 0 , 当 n > N 时 , 有 ∣ a n − A ∣ < ϵ , 称 A 为数列 a n 的极限 若对任意的\epsilon>0, 存在N>0, 当n>N时, 有|a_{n}-A|<\epsilon, 称A为数列{a_{n}}的极限 若对任意的ϵ>0,存在N>0,n>N,anA<ϵ,A为数列an的极限 记为 lim ⁡ n → a a n = A 记为\lim_{n\rightarrow a}a_{n}=A 记为naliman=A

极限的性质:

  1. 唯一性 若极限存在,则极限一定是唯一的 若极限存在,则极限一定是唯一的 若极限存在,则极限一定是唯一的
  2. 保号性 设 lim ⁡ x → a f ( x ) = A > 0 ( 或 < 0 ) , 则存在 δ > 0 , 当 0 < ∣ x − a ∣ < δ 时,有 f ( x ) > 0 ( 或 f ( x ) < 0 ) 设\lim_{x\rightarrow a}f(x)=A>0(或<0), 则存在\delta >0, 当0<|x-a|<\delta时,有f(x)>0(或f(x)<0) xalimf(x)=A>0(<0),则存在δ>0,0<xa<δ时,有f(x)>0(f(x)<0)

介绍极限的时候引入一个无穷的概念
无穷小,定义:
若 lim ⁡ x → a ( x ) = 0 , 称 a ( x ) 在 x → a 的时候为无穷小 若\lim_{x\rightarrow a}(x)=0, 称a(x)在x\rightarrow a的时候为无穷小 xalim(x)=0,a(x)xa的时候为无穷小
无穷小有高低阶之分:
若此时有两个无穷小,则
若 lim ⁡ β α = 0 , 称 β 为 α 的高阶无穷小 若\lim \frac{\beta}{\alpha}=0, 称\beta为\alpha的高阶无穷小 limαβ=0,βα的高阶无穷小
若 lim ⁡ β α = k ( k ≠ 0 , ∞ ) , 称 β 为 α 的同阶无穷小 若\lim \frac{\beta}{\alpha}=k(k\ne0, \infty), 称\beta为\alpha的同阶无穷小 limαβ=k(k=0,),βα的同阶无穷小
特别地 , 若 lim ⁡ β α = 1 , 称 β 为 α 的等价无穷小 特别地, 若\lim \frac{\beta}{\alpha}=1, 称\beta为\alpha的等价无穷小 特别地,limαβ=1,βα的等价无穷小

三、导数

导数的本质就是一个函数在某一个点的极限值,反映了该点的变化率
若对任意的 x ∈ D , lim ⁡ Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x 存在,称函数 y = f ( x ) 在 D 内可导,极限记为 f ′ ( x ) , 被称为导函数或导数 若对任意的x\in D, \lim_{\Delta x \rightarrow 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}存在,称函数y=f(x)在D内可导,极限记为f^\prime(x), 被称为导函数或导数 若对任意的xD,Δx0limΔxf(x+Δx)f(x)存在,称函数y=f(x)D内可导,极限记为f(x),被称为导函数或导数

导数公式和求导法则:
在这里插入图片描述
本文对其不进行细致讨论,了解即可,关于导数运算法则如下:
在这里插入图片描述

四、偏导数

首先引入一个增量的概念
设函数 z = f ( x , y ) ( ( x , y ) ∈ D ) , ( x 0 , y 0 ) ∈ D z=f(x,y)((x,y)\in D),(x_{0},y_{0})\in D z=f(x,y)((x,y)D),(x0,y0)D Δ z x = f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) (或 Δ z = f ( x , y 0 ) − f ( x 0 , y 0 ) ) \Delta z_{x}=f(x_{0}+\Delta x,y_{0})-f(x_{0},y_{0})(或\Delta z=f(x,y_{0})-f(x_{0},y_{0})) Δzx=f(x0+Δx,y0)f(x0,y0)(或Δz=f(x,y0)f(x0,y0)
为该函数在x处的偏增量

Δ z x = f ( x , y 0 + Δ y ) − f ( x 0 , y 0 ) (或 Δ z = f ( x 0 , y ) − f ( x 0 , y 0 ) ) \Delta z_{x}=f(x,y_{0}+\Delta y )-f(x_{0},y_{0})(或\Delta z=f(x_{0},y)-f(x_{0},y_{0})) Δzx=f(x,y0+Δy)f(x0,y0)(或Δz=f(x0,y)f(x0,y0)
为该函数在y处的偏增量

Δ z x = f ( x 0 + Δ x , y 0 + Δ y ) − f ( x 0 , y 0 ) (或 Δ z = f ( x , y ) − f ( x 0 , y 0 ) ) \Delta z_{x}=f(x_{0}+\Delta x,y_{0}+\Delta y )-f(x_{0},y_{0})(或\Delta z=f(x,y)-f(x_{0},y_{0})) Δzx=f(x0+Δx,y0+Δy)f(x0,y0)(或Δz=f(x,y)f(x0,y0)
为该函数的全增量


以下是偏导数的定义

lim ⁡ Δ x → 0 f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) Δ x \lim_{\Delta x \rightarrow 0} \frac{f(x_{0}+\Delta x,y_{0})-f(x_{0},y_{0})}{\Delta x} Δx0limΔxf(x0+Δx,y0)f(x0,y0)存在,就是该函数在该点的偏导数(这里是x),记为
f x ′ ( x 0 , y 0 ) 或 ∂ z ∂ x ∣ x 0 , y 0 f^\prime_x(x_{0},y_{0}) 或\frac{\partial z}{\partial x}\bigg|_{x_{0},y_{0}} fx(x0,y0)xz x0,y0

在y方向上也是同理,若 lim ⁡ Δ y → 0 f ( x 0 , y 0 + Δ y ) − f ( x 0 , y 0 ) Δ y \lim_{\Delta y \rightarrow 0} \frac{f(x_{0},y_{0}+\Delta y)-f(x_{0},y_{0})}{\Delta y} Δy0limΔyf(x0,y0+Δy)f(x0,y0)存在,就是该函数在该点的偏导数,记为
f y ′ ( x 0 , y 0 ) 或 ∂ z ∂ y ∣ x 0 , y 0 f^\prime_y(x_{0},y_{0}) 或\frac{\partial z}{\partial y}\bigg|_{x_{0},y_{0}} fy(x0,y0)yz x0,y0

五、 方向导数

这里只介绍二维空间的方向导数,重点是为了引入梯度的概念

设有一个二元函数,并且在xOy面内过一个点做一条射线
称极限 lim ⁡ ρ → 0 f ( x 0 + Δ x , y 0 + Δ y ) − f ( x 0 , y 0 ) ρ 为函数 z = f ( x , y ) 的在点 M 0 处的方向导数 称极限\lim_{\rho \rightarrow 0}\frac{f(x_{0}+\Delta x, y_{0}+\Delta y)-f(x_{0},y_{0})}{\rho}为函数z=f(x,y)的在点M_{0}处的方向导数 称极限ρ0limρf(x0+Δx,y0+Δy)f(x0,y0)为函数z=f(x,y)的在点M0处的方向导数
其中,
ρ = ( Δ x ) 2 + ( Δ y ) 2 \rho=\sqrt{(\Delta x)^2+(\Delta y)^2} ρ=(Δx)2+(Δy)2
记作 ∂ z ∂ l ∣ M 0 记作\frac{\partial z}{\partial l}\bigg|_{M_{0}} 记作lz M0
如果存在方向角的话
∂ z ∂ l ∣ M 0 = ∂ z ∂ x ∣ M 0 c o s α + ∂ z ∂ y ∣ c o s β \frac{\partial z}{\partial l}\bigg|_{M_{0}}=\frac{\partial z}{\partial x}\bigg|_{M_{0}}cos \alpha +\frac{\partial z}{\partial y}\bigg|cos \beta lz M0=xz M0cosα+yz cosβ

六、梯度

设 u = f ( x , y , z ) 可偏导,称 g r a d   u = { ∂ u ∂ x , ∂ u ∂ y , ∂ u ∂ z } 为函数的梯度 设u=f(x,y,z)可偏导,称grad\thinspace u =\left\{\frac{\partial u}{\partial x},\frac{\partial u}{\partial y},\frac{\partial u}{\partial z}\right\}为函数的梯度 u=f(x,y,z)可偏导,称gradu={xu,yu,zu}为函数的梯度
梯度是一个方向量,这里补充一点关于梯度下降的内容。梯度表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向变化最快,变化率最大。
在机器学习中,通常函数为损失函数,既然是损失,我们模型期待的目标是最小值,因此需要取到梯度的反方向,即梯度下降(想象一下盲人下山的画面)。

防火防盗防诈骗

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值