基于人工智能算法的多元负荷预测

本文探讨使用机器学习算法(如一元线性回归、SVM等)和深度学习的LSTMs模型,针对ASU综合能源系统的多元负荷数据进行预测。通过滑动窗口法处理时序数据,比较不同模型的预测性能,旨在建立一个高效的历史数据驱动的负荷预测模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本人专挑数据挖掘、机器学习和 NLP 类型的题目做,有兴趣也可以逛逛我的数据挖掘竞赛专栏

如果本篇博文对您有所帮助,请不要吝啬您的点赞 😊

数据来源:https://cm.asu.edu/

课题描述

本文主要介绍如何使用机器学习算法,主要列举了包括:一元线性回归、支持向量机、决策树、k 近邻算法、AdaBoost、随机森林 等多个机器学习算法;同时,也介绍了使用深度学习算法 LSTMs 模型,来解决多元时序负荷数据的预测模型。

当然,主要将理论就有些扫兴了,因此本文结合了一个课题来进行介绍,课题的主要细节如下:

能源负荷与价格、政策、天气等多种影响因素相关,难以建立精确的数学模型,阻碍了传统的负荷预测方法获得令人满意的结果。人工智能方法在分析过程中无须建立对象的精确模型,能较好地拟合负荷与其影响因素之间的非线性关系,本课题采用机器学习算法进行能源负荷预测(包括电负荷、热负荷、天然气负荷)

ASU 综合能源系统的 多元负荷预测

本文将从 ASU(亚利桑那州大学)的综合能源

评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zhuo木鸟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值