【阶段三】Python机器学习23篇:机器学习项目实战:XGBoost分类模型

本文深入探讨XGBoost算法的核心思想,包括其与GBDT的关系和优化策略。通过一个金融反欺诈项目的实战,展示了数据获取、预处理、特征工程和模型构建与评估的全过程。最终,XGBoost模型达到了91.00%的准确率和0.875的F1分值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本篇的思维导图


 

         XGBoost算法可以说是集成学习方法中的王牌算法。在著名的数据挖掘比赛平台Kaggle上,众多获胜者都使用了XGBoost算法,它在绝大多数回归问题和分类问题上的表现都十分不错。


XGBoost算法的核心思想


       XGBoost算法在某种程度上可以说是GBDT算法的改良版,两者在本质上都是利用了Boosting算法中拟合残差的思想。下图所示为GBDT算法的核心思想小节讲解GBDT算法时提到的信用卡额度预测模型,其中初始决策树的预测结果不完全准确,会产生一些残差,因此会用新的决策

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张陈亚

您的鼓励,将是我最大的坚持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值