Python实现时间序列分析霍尔特季节性平滑模型(Holt算法)项目实战

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。

1.项目背景

霍尔特季节性平滑模型是指数平滑技术的一种扩展形式,由E. S. Holt和P. R. Winters分别独立提出并进一步发展。该模型旨在处理具有趋势和季节性的时间序列数据,它结合了霍尔特线性趋势指数平滑(Holt's Linear Trend Method)以及对季节性成分的估计。

在霍尔特-温特斯季节性指数平滑模型中,包含了三个基本成分:

水平(Level):代表时间序列的基本水平或平均值。

趋势(Trend):描述时间序列中的长期上升或下降趋势。

季节性(Seasonality):反映周期性的波动,如每个季度、每月或每周的变化规律。

本项目通过Holt算法来构建时间序列分析霍尔特季节性平滑模型。        

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

编号 

变量名称

描述

1

DATE

2

y

数据详情如下(部分展示):

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

关键代码:

3.2 数据缺失查看

使用Pandas工具的info()方法查看数据信息:

从上图可以看到,总共有1个变量,数据中无缺失值,共15条数据。

关键代码:

3.3 数据描述性统计

通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。 

关键代码如下:    

  

4.探索性数据分析

4.1 变量直方图

用Matplotlib工具的hist()方法绘制直方图:

从上图可以看到,变量主要集中在20~40之间。  

4.2 折线图

从上图中可以看到,数据呈逐步上升趋势。

5.构建霍尔特季节性平滑模型 

主要使用Holt算法,用于时间序列分析霍尔特季节性平滑模型。     

5.1 构建模型

编号

模型名称

参数

1

霍尔特季节性平滑模型 

initialization_method="estimated"

2

smoothing_level=0.8

3

smoothing_trend=0.2

4

optimized=False

5.2 模型摘要信息

为指定指数参数的模型摘要信息:

5.3 模型摘要信息

指定指数参数的模型摘要信息:

5.4 模型摘要信息

采用阻尼趋势的模型摘要信息:

6.模型评估

6.1 真实值与预测值比对图

7.结论与展望

综上所述,本文采用了Holt算法来构建时间序列分析霍尔特季节性平滑模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张陈亚

您的鼓励,将是我最大的坚持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值