Python实现ACO蚁群优化算法优化随机森林分类模型(RandomForestClassifier算法)项目实战

416 篇文章 281 订阅

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。




1.项目背景

蚁群优化算法(Ant Colony Optimization, ACO)是一种源于大自然生物世界的新的仿生进化算法,由意大利学者M. Dorigo, V. Maniezzo和A.Colorni等人于20世纪90年代初期通过模拟自然界中蚂蚁集体寻径行为而提出的一种基于种群的启发式随机搜索算法"。蚂蚁有能力在没有任何提示的情形下找到从巢穴到食物源的最短路径,并且能随环境的变化,适应性地搜索新的路径,产生新的选择。其根本原因是蚂蚁在寻找食物时,能在其走过的路径上释放一种特殊的分泌物——信息素(也称外激素),随着时间的推移该物质会逐渐挥发,后来的蚂蚁选择该路径的概率与当时这条路径上信息素的强度成正比。当一条路径上通过的蚂蚁越来越多时,其留下的信息素也越来越多,后来蚂蚁选择该路径的概率也就越高,从而更增加了该路径上的信息素强度。而强度大的信息素会吸引更多的蚂蚁,从而形成一种正反馈机制。通过这种正反馈机制,蚂蚁最终可以发现最短路径。

本项目通过ACO蚁群优化算法寻找最优的参数值来优化随机森林分类模型。

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

数据详情如下(部分展示):

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

关键代码:

3.2数据缺失查看

使用Pandas工具的info()方法查看数据信息:

从上图可以看到,总共有11个变量,数据中无缺失值,共1000条数据。

关键代码:

3.3数据描述性统计

通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。

关键代码如下:

4.探索性数据分析

4.1 y变量柱状图

用Matplotlib工具的plot()方法绘制直方图:

4.2 y=1样本x1变量分布直方图

用Matplotlib工具的hist()方法绘制直方图:

4.3 相关性分析

 

从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。

5.特征工程

5.1 建立特征数据和标签数据

关键代码如下:

5.2 数据集拆分

通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下:

6.构建ACO蚁群优化算法优化随机森林分类模型

主要使用ACO蚁群优化算法优化随机森林分类算法,用于目标分类。

6.1 ACO蚁群优化算法寻找的最优参数

关键代码:

最优参数:

 6.2 最优参数值构建模型

7.模型评估

7.1 评估指标及结果

评估指标主要包括准确率、查准率、查全率、F1分值等等。

从上表可以看出,F1分值为0.9050,说明模型效果较好。

关键代码如下:

7.2 分类报告

 

从上图可以看出,分类为0的F1分值为0.90;分类为1的F1分值为0.91。

7.3 混淆矩阵

从上图可以看出,实际为0预测不为0的 有9个样本;实际为1预测不为1的 有10个样本,整体预测准确率良好。

8.结论与展望

综上所述,本文采用了ACO蚁群优化算法寻找随机森林分类算法的最优参数值来构建分类模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。

# 本次机器学习项目实战所需的资料,项目资源如下:
 
# 项目说明:

# 链接:https://pan.baidu.com/s/1IT7AOYOqJjSTB3KbIq15cQ 
# 提取码:p00l

 更多项目实战,详见机器学习项目实战合集列表:

机器学习项目实战合集列表_机器学习实战项目_胖哥真不错的博客-CSDN博客


蚁群优化算法(Ant Colony Optimization, ACO)是一种模拟蚂蚁觅食行为的启发式算法,常用于解决组合优化问题。下面是一个使用Python实现蚁群优化算法的示例代码: ```python import numpy as np class AntColonyOptimizer: def __init__(self, num_ants, num_iterations, alpha, beta, rho, Q): self.num_ants = num_ants # 蚂蚁数量 self.num_iterations = num_iterations # 迭代次数 self.alpha = alpha # 信息素重要程度 self.beta = beta # 启发式因子重要程度 self.rho = rho # 信息素挥发因子 self.Q = Q # 信息素增量常数 def optimize(self, distance_matrix): num_cities = distance_matrix.shape[0] pheromone_matrix = np.ones((num_cities, num_cities)) best_path = None best_distance = float('inf') for iteration in range(self.num_iterations): paths = [] distances = [] for ant in range(self.num_ants): path = [np.random.randint(num_cities)] visited = np.zeros(num_cities, dtype=bool) visited[path[0]] = True for _ in range(num_cities - 1): next_city = self._select_next_city(pheromone_matrix, distance_matrix, path[-1], visited) path.append(next_city) visited[next_city] = True path.append(path[0]) # 回到起始城市 distance = self._calculate_distance(path, distance_matrix) paths.append(path) distances.append(distance) if distance < best_distance: best_path = path best_distance = distance self._update_pheromone(pheromone_matrix, paths, distances) return best_path, best_distance def _select_next_city(self, pheromone_matrix, distance_matrix, current_city, visited): unvisited_cities = np.where(~visited)[0] num_unvisited = len(unvisited_cities) probabilities = np.zeros(num_unvisited) for i, city in enumerate(unvisited_cities): probabilities[i] = (pheromone_matrix[current_city, city] ** self.alpha) * \ ((1 / distance_matrix[current_city, city]) ** self.beta) probabilities /= np.sum(probabilities) next_city = np.random.choice(unvisited_cities, p=probabilities) return next_city def _calculate_distance(self, path, distance_matrix): distance = 0 for i in range(len(path) - 1): distance += distance_matrix[path[i], path[i+1]] return distance def _update_pheromone(self, pheromone_matrix, paths, distances): pheromone_matrix *= (1 - self.rho) for i in range(self.num_ants): for j in range(len(paths[i]) - 1): current_city = paths[i][j] next_city = paths[i][j+1] pheromone_matrix[current_city, next_city] += (self.Q / distances[i]) pheromone_matrix[next_city, current_city] = pheromone_matrix[current_city, next_city] ``` 上述代码实现了一个简单的蚁群优化算法,其中包括初始化参数、优化函数和内部辅助函数。你可以根据自己的需求进行调整和扩展。在使用时,需要提供一个距离矩阵作为输入,表示各个城市之间的距离信息。算法会返回找到的最佳路径和对应的最短距离。 希望对你有所帮助!如果有任何问题,请随时提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张陈亚

您的鼓励,将是我最大的坚持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值