Python实现ABC人工蜂群优化算法优化XGBoost分类模型(XGBClassifier算法)项目实战

376 篇文章 271 订阅

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。

1.项目背景

人工蜂群算法(Artificial Bee Colony, ABC)是由Karaboga于2005年提出的一种新颖的基于群智能的全局优化算法,其直观背景来源于蜂群的采蜜行为,蜜蜂根据各自的分工进行不同的活动,并实现蜂群信息的共享和交流,从而找到问题的最优解。人工蜂群算法属于群智能算法的一种。  

本项目通过ABC人工蜂群优化算法优化XGBoost分类模型。     

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

编号 

变量名称

描述

1

x1

2

x2

3

x3

4

x4

5

x5

6

x6

7

x7

8

x8

9

x9

10

x10

11

y

因变量

数据详情如下(部分展示):

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据: 

关键代码:

3.2数据缺失查看

使用Pandas工具的info()方法查看数据信息:

从上图可以看到,总共有11个变量,数据中无缺失值,共2000条数据。

关键代码: 

3.3数据描述性统计

通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。

关键代码如下:  

4.探索性数据分析

4.1 y变量柱状图

用Matplotlib工具的plot()方法绘制柱状图:

4.2 y=1样本x1变量分布直方图

用Matplotlib工具的hist()方法绘制直方图:

4.3 相关性分析

从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。

5.特征工程

5.1 建立特征数据和标签数据

关键代码如下:

5.2 数据集拆分

通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下:

6.构建ABC人工蜂群优化算法优化XGBoost分类模型 

主要使用ABC人工蜂群优化算法优化XGBoost分类算法,用于目标分类。  

6.1 ABC人工蜂群优化算法寻找最优参数值 

最优参数:

6.2 最优参数值构建模型 

编号

模型名称

参数

1

XGBoost分类模型

n_estimators=best_n_estimators

2

learning_rate=best_learning_rate

7.模型评估

7.1评估指标及结果 

评估指标主要包括准确率、查准率、查全率、F1分值等等。

模型名称

指标名称

指标值

测试集

XGBoost分类模型 

准确率

 0.9600

查准率

0.9469

查全率

0.9751

F1分值

0.9608

从上表可以看出,F1分值为0.9608,说明模型效果良好。   

关键代码如下:

7.2 分类报告

从上图可以看出,分类为0的F1分值为0.96;分类为1的F1分值为0.96。  

7.3 混淆矩阵

从上图可以看出,实际为0预测不为0的 有11个样本;实际为1预测不为1的 有5个样本,整体预测准确率良好。  

8.结论与展望

综上所述,本文采用了ABC人工蜂群优化算法寻找XGBoost分类算法的最优参数值来构建分类模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。  

# 本次机器学习项目实战所需的资料,项目资源如下:
 
# 项目说明:
 
# 获取方式一:
 
# 项目实战合集导航:
 
https://docs.qq.com/sheet/DTVd0Y2NNQUlWcmd6?tab=BB08J2
 
# 获取方式二:
 
链接:https://pan.baidu.com/s/1zE2Er6icwE_KZ6AEPJEqUg 
提取码:kh90
  • 5
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
人工蜂群算法(Artificial Bee Colony Algorithm,ABC)是一种群体智能算法,可以用于求解优化问题。TSP(Traveling Salesman Problem)是一个著名的组合优化问题,其目标是找到一条最短的路径,使得旅行家可以经过所有城市并回到起点。 下面是利用 Python 实现人工蜂群算法优化求解 TSP 的步骤: 1. 定义问题:TSP 问题可以表示为一个图,其中每个城市表示一个节点,城市之间的距离表示边。我们需要找到一条路径,使得经过每个节点一次并返回起点的路径长度最小。 2. 定义蜜蜂:在 ABC 算法中,有三种蜜蜂:雇佣蜜蜂、侦查蜜蜂和观察蜜蜂。我们可以用 Python 类来表示这些蜜蜂。 3. 初始化蜜蜂群体:我们需要初始化一群雇佣蜜蜂,每个雇佣蜜蜂都代表一条路径。我们可以随机生成一些路径作为初始路径。 4. 计算适应度:我们需要计算每个雇佣蜜蜂的适应度,即路径长度。我们可以使用 TSP 问题中的欧几里得距离公式来计算两个城市之间的距离。 5. 进行搜索:在搜索过程中,我们需要让雇佣蜜蜂和侦查蜜蜂搜索新的解,并交换信息。我们还需要让观察蜜蜂选择最优解并更新雇佣蜜蜂的位置。 6. 更新最优解:我们需要记录最优路径和最优路径长度。 7. 停止条件:我们可以设置一个停止条件,例如连续多次迭代后最优解没有发生变化,或者达到了预设的迭代次数。 下面是 Python 代码实现: ```python import random import math # 问题定义 class TSP: def __init__(self, cities): self.cities = cities self.n = len(cities) def distance(self, i, j): xi, yi = self.cities[i] xj, yj = self.cities[j] return math.sqrt((xi-xj)**2 + (yi-yj)**2) def path_length(self, path): return sum([self.distance(path[i], path[(i+1)%self.n]) for i in range(self.n)]) # 蜜蜂类 class Bee: def __init__(self, path): self.path = path self.fitness = None # 雇佣蜜蜂类 class EmployedBee(Bee): def search(self, limit): # 从路径中随机选择两个城市 i, j = random.sample(range(len(self.path)), 2) # 生成新解 new_path = self.path.copy() new_path[i], new_path[j] = new_path[j], new_path[i] # 计算适应度 new_fitness = problem.path_length(new_path) # 如果新解更优,则更新 if new_fitness < self.fitness: self.path = new_path self.fitness = new_fitness limit[0] = 0 else: limit[0] += 1 # 侦查蜜蜂类 class ScoutBee(Bee): def search(self): # 生成新解 new_path = random.sample(self.path, len(self.path)) # 计算适应度 new_fitness = problem.path_length(new_path) # 更新解 self.path = new_path self.fitness = new_fitness # 观察蜜蜂类 class OnlookerBee(Bee): def search(self, limit, fitness_sum): # 选择一条路径 i = random.choices(range(len(employed_bees)), weights=fitness_sum)[0] employed_bee = employed_bees[i] # 从路径中随机选择两个城市 i, j = random.sample(range(len(employed_bee.path)), 2) # 生成新解 new_path = employed_bee.path.copy() new_path[i], new_path[j] = new_path[j], new_path[i] # 计算适应度 new_fitness = problem.path_length(new_path) # 如果新解更优,则更新 if new_fitness < self.fitness: self.path = new_path self.fitness = new_fitness employed_bee.path = new_path employed_bee.fitness = new_fitness limit[0] = 0 else: limit[0] += 1 # 初始化问题和蜜蜂 cities = [(random.uniform(0, 1), random.uniform(0, 1)) for _ in range(20)] problem = TSP(cities) employed_bees = [EmployedBee(random.sample(range(problem.n), problem.n)) for _ in range(10)] scout_bees = [ScoutBee(random.sample(range(problem.n), problem.n)) for _ in range(10)] onlooker_bees = [OnlookerBee(random.sample(range(problem.n), problem.n)) for _ in range(10)] # 迭代搜索 best_path = None best_fitness = math.inf limit = [0] for _ in range(100): # 计算适应度 for bee in employed_bees+scout_bees+onlooker_bees: bee.fitness = problem.path_length(bee.path) fitness_sum = [sum([1/bee.fitness for bee in employed_bees+onlooker_bees])] * len(employed_bees+onlooker_bees) # 雇佣蜜蜂搜索 for bee in employed_bees: bee.search(limit) # 侦查蜜蜂搜索 for bee in scout_bees: bee.search() # 观察蜜蜂搜索 for bee in onlooker_bees: bee.search(limit, fitness_sum) # 更新最优解 for bee in employed_bees+scout_bees+onlooker_bees: if bee.fitness < best_fitness: best_path = bee.path best_fitness = bee.fitness # 检查停止条件 if limit[0] >= 20: break # 输出结果 print(best_path) print(best_fitness) ``` 在这个例子中,我们使用了 20 个随机生成的城市,并且每个蜜蜂代表一条路径。我们迭代了 100 次,并记录了最优路径和最优路径长度。最后,我们输出了最优路径和最优路径长度。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

胖哥真不错

您的鼓励,将是我最大的坚持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值