数据分享:医学数据集-心脏病数据

说明:如需数据可以直接到文章最后关注获取。

1.数据背景   

心脏病数据集最初由多个医疗研究机构收集,主要包括 Cleveland Clinic Foundation、Hungarian Institute of Cardiology, Budapest、VA Medical Center, Long Beach and the Cleveland Clinic Foundation 以及 University Hospital, Zurich, Switzerland。该数据集是心脏病学领域的一个重要资源,旨在帮助研究人员和临床医生更好地理解心脏病的风险因素,并开发更有效的预测模型。

Cleveland 数据集是最常被使用的版本,它包含了来自 Cleveland 诊所的 303 个病人的记录。随着时间的推移,这个数据集已经被广泛应用于机器学习和统计分析中,成为评估各种算法性能的标准之一。  

心脏病数据集包含了一系列与病人健康状况相关的特征,总共 76 个属性,但通常只使用其中的 14 个最为常用且信息量丰富的特征。这些特征涵盖了病人的基本人口统计数据、生理指标、生活习惯以及医学检查结果等。每个特征都对理解心脏病的发生和发展具有潜在的重要性。

心脏病数据集主要用于以下几个方面:

疾病预测:构建机器学习模型来预测个体患心脏病的风险,帮助早期发现和干预。

特征选择:识别哪些特征对于预测心脏病最为关键,从而指导临床实践和进一步的研究。

医疗决策支持:为医生提供辅助工具,根据患者的特征评估心脏病的可能性,辅助制定治疗方案。

药物研发:理解不同因素如何影响心脏病的发展,有助于新药的研发和临床试验的设计。

心脏病是全球范围内导致死亡的主要原因之一,因此,对心脏病风险因素的理解和预测至关重要。心脏病数据集提供了宝贵的机会,使研究人员能够:

探索风险因素:深入分析哪些因素最有可能增加心脏病的风险,包括生活方式、遗传因素和环境因素。

提高诊断准确性:通过机器学习模型的不断优化,提升心脏病的诊断精度,减少误诊和漏诊。

个性化医疗:根据患者的具体情况定制个性化的预防和治疗策略,实现精准医疗。

心脏病数据集是一个极具价值的研究工具,它不仅帮助科学家们深入了解心脏病的发病机制,还为开发更准确的预测模型提供了坚实的基础。随着人工智能和大数据技术的不断发展,我们有理由相信,这个数据集将继续在心脏病学领域发挥重要作用,推动相关研究和技术的进步。 

2.数据介绍

数据格式为csv格式。   

编号

变量名称

描述

1

age

病人的年龄(以年为单位)

2

sex

病人性别 (1 = 男, 0 = 女)

3

cp

胸痛类型 (1: 典型心绞痛, 2: 非典型心绞痛, 3: 无心绞痛, 4: 无症状)

4

trestbps

入院时的静息血压(毫米汞柱)

5

chol

血清中的胆固醇含量(毫克/分升)

6

fbs

空腹血糖水平 (> 120 mg/dl 为 1, 否则为 0)

7

restecg

静息心电图结果 (0: 正常, 1: ST-T 波异常, 2: 可能或肯定的左室肥大)

8

thalach

达到的最大心率

9

exang

运动诱发的心绞痛 (1 = 是, 0 = 否)

10

oldpeak

相对于休息的旧峰 ST 抑制(连续值)

11

slope

峰值运动 ST 段的斜率 (1: 上坡, 2: 平坦, 3: 下坡)

12

ca

通过荧光透视显示的主要血管数目(0-3)

13

thal

心肌灌注显像的结果 (3 = 正常, 6 = 固定缺陷, 7 = 可逆缺陷)

14

y

0 = 没有疾病,1-4 = 不同程度的疾病

数据详情如下(部分展示): 

3.数据获取

关注下方   回复1003,获取。

<think>好的,用户正在寻找适用于YOLOv8-Seg的医学图像分割数据集,并且需要了解数据集的格式。首先,我需要回顾YOLOv8-Seg的数据格式要求。根据引用[2]和[4],YOLOv8-Seg是基于实例分割的模型,通常使用类似COCO的格式,但可能有特定的目录结构和标注文件要求。 接下来,用户提到医学数据集,可能需要特定的医学影像类型,如CT、MRI等。需要确认常见的医学分割数据集是否支持YOLOv8-Seg的格式,或者是否需要转换。例如,引用[1]中提到了在自定义医学数据集上微调YOLOv9,这说明可能需要将医学数据转换为YOLO格式。 YOLOv8-Seg的数据格式通常包括图像文件和对应的标注文件。每个标注文件可能包含每个实例的类别和分割掩膜的坐标。需要明确的是,YOLO格式的实例分割标注通常是每个对象一行,包括类别、归一化的坐标点。例如,引用[3]中的YOLOv5-Seg使用类似的方法,可能YOLOv8-Seg也沿用这种格式。 另外,数据集目录结构也很重要。通常会有images和labels文件夹,分别存放图像和对应的txt标注文件。可能还需要数据集配置文件(如data.yaml),其中指定类别、路径等信息。 然后,需要查找现有的医学图像分割数据集是否符合这种格式,或者如何转换。例如,医学分割数据集如BraTS、ISIC等可能需要从原始格式(如NIfTI或DICOM)转换为YOLO支持的格式。可能需要使用工具将分割掩膜转换为多边形坐标,并保存为txt文件。 同时,用户可能需要指导如何准备自定义的医学数据集,包括标注工具推荐(如Labelme、CVAT)和转换脚本的示例。例如,引用[3]提到使用YOLOv5-Seg的自定义数据集流程,可能类似适用于YOLOv8-Seg。 最后,总结关键点:数据集结构、标注格式、转换方法以及示例代码,帮助用户理解和应用。需要确保回答清晰,步骤详细,并引用相关的参考资料,如引用[1][2][4]中提到的YOLO实例分割实践和预训练模型的信息。</think>### 医学图像分割数据集的YOLOv8-Seg格式说明 YOLOv8-Seg要求数据集遵循特定的目录结构和标注格式,以下是详细要求: --- #### **1. 数据集目录结构** ```bash dataset/ ├── images/ │ ├── train/ # 训练集图像 │ │ ├── image1.jpg │ │ └── ... │ └── val/ # 验证集图像 │ ├── image2.jpg │ └── ... └── labels/ ├── train/ # 训练集标注文件(与图像同名,扩展名为.txt) │ ├── image1.txt │ └── ... └── val/ # 验证集标注文件 ├── image2.txt └── ... ``` --- #### **2. 标注文件格式** 每个图像的标注文件(`.txt`)需包含实例的**类别编号**和**归一化的多边形坐标**。 **格式示例:** ```plaintext <class_id> <x1> <y1> <x2> <y2> ... <xn> <yn> ``` - **归一化坐标**:所有坐标值需除以图像宽度(x轴)和高度(y轴),范围在$[0,1]$之间。 - **多边形点顺序**:按顺时针或逆时针顺序排列,闭合区域。 **示例标注内容:** 假设图像尺寸为$640 \times 480$,标注文件中的一行可能为: ```plaintext 0 0.25 0.3 0.75 0.3 0.5 0.7 # 表示类别0,三个归一化坐标点(x1=160, y1=144; x2=480, y2=144; x3=320, y3=336) ``` --- #### **3. 医学数据集适配建议** - **数据来源**:医学影像(如CT、MRI、病理切片)需转换为标准图像格式(如PNG/JPG),并调整分辨率一致[^1]。 - **标注工具**:使用专业工具(如ITK-SNAP、3D Slicer)标注后,导出为`COCO JSON`格式,再转换为YOLO格式。 - **数据增强**:针对医学影像特点(如对比度低、噪声多),建议在训练时添加灰度变换、弹性变形等增强策略[^4]。 --- #### **4. 数据集配置文件(`data.yaml`)** ```yaml path: ./dataset # 数据集根目录 train: images/train # 训练集路径 val: images/val # 验证集路径 test: # 可选测试集路径 # 类别定义 names: 0: tumor # 类别编号与名称对应 1: blood_vessel 2: lesion ``` --- #### **5. 公开医学数据集推荐** 1. **BraTS(脑肿瘤分割)** - 包含多模态MRI图像,需将NIfTI格式转换为YOLO格式。 2. **ISIC(皮肤病变分割)** - 提供皮肤镜图像和病变掩膜,适合皮肤病诊断任务。 3. **LiTS(肝脏肿瘤分割)** - CT影像中的肝脏肿瘤标注,需从DICOM转换为PNG。 --- #### **6. 格式转换工具示例** 若已有COCO格式标注(`annotations.json`),可使用Python脚本转换: ```python from pycocotools.coco import COCO import os coco = COCO('annotations.json') for img_id in coco.imgs: img_info = coco.loadImgs(img_id)[0] ann_ids = coco.getAnnIds(imgIds=img_id) annotations = coco.loadAnns(ann_ids) with open(f'labels/{img_info["file_name"].replace(".jpg", ".txt")}', 'w') as f: for ann in annotations: class_id = ann["category_id"] polygon = ann["segmentation"][0] # 提取多边形坐标 normalized_coords = [x/img_info["width"] if i%2==0 else x/img_info["height"] for i, x in enumerate(polygon)] f.write(f"{class_id} " + " ".join(map(str, normalized_coords)) + "\n") ``` --- ###
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张陈亚

您的鼓励,将是我最大的坚持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值