场景解析和语义分割区别_语义分割概念及应用介绍

语义分割是一种计算机视觉技术,用于将图像中的每个像素分类到特定的对象类别。它区别于图像分类和物体检测,能提供更精细的图像理解。应用包括自动驾驶、地质检测、面部分割、时尚分析和精准农业等领域,对于解决复杂识别任务具有重要意义。
摘要由CSDN通过智能技术生成

近年来,以深度学习为中心的机器学习技术引起了人们的关注。比如自动驾驶汽车已经逐渐成为可能,但在整个深度学习过程,需要算法识别和学习作为原始数据提供的图像,在这一过程中,应用到了语义分割技术。下面让我们来看看语义分割的需求是如何演变的。

早期,计算机视觉的初始应用需求只是识别基本元素,例如边缘(线和曲线)或渐变。然而,仅仅通过全像素语义分割的创造来理解像素级的图像,它将属于同一目标的图像部分聚集在一起,从而扩展了语义分割的应用场景。

识别每个像素或分组像素一起分配类别的过程可以通过以下过程:图像分类(image classification)——识别图像中存在的内容;

物体识别和检测(object recognition and detection)——识别图像中存在的内容和位置(通过边界框);

语义分割(semantic segmentation) ——识别图像中存在的内容以及位置(通过查找属于它的所有像素)

下面进入本文的主要内容:

什么是语义分割?

语义分割是一种典型的计算机视觉问题,其涉及将一些原始数据(例如,平面图像)作为输入并将它们转换为具有突出显示的感兴趣区域的掩模。许多人使用术语全像素语义分割(full-pixel semantic segmentation),其中图像中的每个像素根据其所属的感兴趣对象被分配类别ID。

早期的计算机视觉问题只发现边缘(线条和曲线)或渐变等元素,但它们从未完全按照人类感知的方式提供像素级别的图像理解。语义分割将属于同一目标的图像部分聚集在一起来解决这个问题,从而扩展了其应用领域。

注意,与其他基于图像的任务相比,语义分割是完全不同的且先进的,例如,图像分类:识别图

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值