Pytorch实现k折交叉验证

本文介绍如何利用PyTorch实现K折交叉验证,详细解析获取每一折的训练集和验证集过程,并展示模型训练的方法。内容参照了https://blog.csdn.net/foneone/article/details/104445320的相关实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Pytorch实现k折交叉验证

代码思路参考:https://blog.csdn.net/foneone/article/details/104445320
用pytorch实现k-fold cross validation

# 导入模块
import numpy as np
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader, Dataset, TensorDataset
# 创建一个数据集
X = torch.rand(500, 32, 32)
Y = torch.rand(500, 1)
# random shuffle
index = [i for i in range(len(X))] 
random.shuffle(index)
X = X[index]
Y = Y[index]

获取k折交叉验证某一折的训练集和验证集

def get_kfold_data(k, i, X, y):  
     
    # 返回第 i+1 折 (i = 0 -> k-1) 交叉验证时所需要的训练和验证数据,X_train为训练集,X_valid为验证集
    fold_size = X.shape[0] // k  # 每份的个数:数据总条数/折数(组数)
    
    val_start = i * fold_size
    if i != k - 1:
        val_end = (i + 1) * fold_size
        X_valid, y_valid = X[val_start:val_end], y[val_start:val_end]
        X_train = torch.cat((X[0:val_start], X[val_end:]), dim = 0)
        y_train = torch.cat((y[0:val_start], y[val_end:]), dim = 0)
    else:
Sure! Here's an example of how you can implement k-fold cross-validation using PyTorch: ```python import torch from torch.utils.data import Subset, DataLoader # Define your dataset and model dataset = YourDataset() model = YourModel() # Set hyperparameters num_epochs = 10 batch_size = 64 k_folds = 5 # Calculate the size of each fold fold_size = len(dataset) // k_folds # Define the loss function and optimizer criterion = torch.nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.parameters(), lr=0.001) # Perform k-fold cross-validation for fold in range(k_folds): # Create the training and validation sets for this fold start_index = fold * fold_size end_index = (fold + 1) * fold_size # Prepare the data loaders for training and validation train_indices = list(set(range(len(dataset))) - set(range(start_index, end_index))) train_sampler = SubsetRandomSampler(train_indices) train_loader = DataLoader(dataset, batch_size=batch_size, sampler=train_sampler) val_indices = list(range(start_index, end_index)) val_sampler = SubsetRandomSampler(val_indices) val_loader = DataLoader(dataset, batch_size=batch_size, sampler=val_sampler) # Train the model for this fold for epoch in range(num_epochs): model.train() for inputs, targets in train_loader: optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, targets) loss.backward() optimizer.step() # Evaluate the model on the validation set for this fold model.eval() total_loss = 0 correct = 0 total = 0 with torch.no_grad(): for inputs, targets in val_loader: outputs = model(inputs) loss = criterion(outputs, targets) total_loss += loss.item() _, predicted = torch.max(outputs.data, 1) total += targets.size(0) correct += (predicted == targets).sum().item() # Print the validation accuracy for this fold print(f"Fold {fold + 1}, Epoch {epoch + 1}: Validation Accuracy = {100 * correct / total}%") ``` In this code, you would need to replace `YourDataset` and `YourModel` with your own dataset and model classes. The code performs k-fold cross-validation by creating separate training and validation sets for each fold using the `SubsetRandomSampler`. The model is trained on the training set and evaluated on the validation set for each fold. Finally, the validation accuracy for each fold is printed. Remember to adjust the hyperparameters (`num_epochs`, `batch_size`, `k_folds`, etc.) according to your specific needs.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值