After returning from the army Makes received a gift — an array a consisting of n positive integer numbers. He hadn’t been solving problems for a long time, so he became interested to answer a particular question: how many triples of indices (i, j, k) (i < j < k), such that ai·aj·ak is minimum possible, are there in the array? Help him with it!
Input
The first line of input contains a positive integer number n (3 ≤ n ≤ 105) — the number of elements in array a. The second line contains n positive integer numbers ai (1 ≤ ai ≤ 109) — the elements of a given array.
Output
Print one number — the quantity of triples (i, j, k) such that i, j and k are pairwise distinct and ai·aj·ak is minimum possible.
Examples
Input
4
1 1 1 1
Output
4
Input
5
1 3 2 3 4
Output
2
Input
6
1 3 3 1 3 2
Output
1
Note
In the first example Makes always chooses three ones out of four, and the number of ways to choose them is 4.
In the second example a triple of numbers (1, 2, 3) is chosen (numbers, not indices). Since there are two ways to choose an element 3, then the answer is 2.
In the third example a triple of numbers (1, 1, 2) is chosen, and there’s only one way to choose indices.
a[1]=a[2]=a[3],三元素相同,可以统计与这三元素相等的个数,假设cnt个,结果是从cnt中找3个
a[1]=a[2]<a[3],统计后续等于a[3]的元素个数,假设cnt个,结果就是cnt
a[1]<a[2]=a[3],统计后续等于a[3]的元素个数,假设cnt个,结果是从cnt中找两个
a[1]<a[2]<a[3],统计后续等于a[3]的元素个数,假设cnt个,结果也是cnt
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std;
typedef long long ll;
ll a[100005];
ll n, ans;
ll func(int n, int m)
{
ll ans=1;
ll i;
if (m<n-m)
m=n-m;
for (i=m+1; i<=n; i++)
ans*=i;
for (i=1; i<=n-m; i++)
ans/=i;
return ans;
}
int main()
{
scanf("%lld", &n);
for (int i=1; i<=n; i++)
scanf("%lld", &a[i]);
sort(a+1, a+n+1);
if (n==3){
printf("1");
return 0;
}
if (a[1]==a[2] && a[2]==a[3]){
for (ll i=4; i<=n; i++){
if (a[i]==a[3]) ans++;
else break;
}
ans=func(ans+3, 3);
}else if (a[1]==a[2] && a[2]<a[3]){
for (ll i=4; i<=n; i++){
if (a[i]==a[3]) ans++;
else break;
}
ans=ans+1;
}else if (a[1]<a[2] && a[2]==a[3]){
for (ll i=4; i<=n; i++){
if (a[i]==a[3]) ans++;
else break;
}
ans=func(ans+2, 2);
}else{
for (ll i=4; i<=n; i++){
if (a[i]==a[3]) ans++;
else break;
}
ans=ans+1;
}
printf("%lld", ans);
return 0;
}