Bagging与Boosting基础逻辑

Bagging

基本思路:

有数据集N,进行有放回的抽取n个数据,N > n,反复K次,得到K组数据,

K组数据分别独立训练K个模型,然后再投票得到分类结果。

投票方法:

绝对多数投票法,某个类超过半数

相对多数投票法,票数最多的为预测结果,若多个同时最高,则从最高中随机一个

加权投票法,与加权平均类似

若是回归问题,则取平均数

 

bagging的应用:

bagging是为了降低variance

主要是针对容易过拟合的模型,多个模型投票可以降低过拟合风险。

特别针对稳定性较差的模型,稳定性越差,提升效果越明显。

比如决策树,只要树够深就一定会过拟合,于是随机森林就出现了。

随机森林在基础bagging的思路上还增加了特征随机。

 

 

Boosting

基本思路:

是一个迭代过程,每轮训练都是全量样本,每轮训练改变样本的权重,迭代T次后,把这T个模型再

按照训练过程中的权重进行加权得到最终model。

 

思路上会比bagging复杂些,boosting会减小再上一轮训练正确的样本的权重,增大错误样本在loss计算

中的权重。(对的残差小,错的残差大)

权重调整方式:

先给每一个样本同样的权重1, 训练得到

然后调整权重,增加错误数据的权重,降低正确数据的权重,使得

正确率降低到0.5, 然后把带着新的权重的样本来训练

如此迭代到停止。

 

boosting应用:

boosting是为了降低bias

与bagging抑制过拟合不同,boosting是为了增强拟合能力,服务目标是弱模型。

Adaboost是boosting的样本应用,并且每一次迭代过程的子训练本身是独立的,都是优化自己的log loss。

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值