多元时间序列分析与VAR模型实践

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:多元时间序列分析是处理相互关联时间序列数据的重要方法,其核心工具向量自回归模型(VAR)能够揭示变量间的动态关系。VAR模型允许同时考虑多个变量的影响,通过滞后值的线性函数来捕捉它们的相互作用。该模型在预测、协整关系分析、格兰杰因果关系检验、脉冲响应函数分析及方差分解方面具有应用价值。本教程将指导如何使用Python实现VAR模型,并进行相关统计分析,以深入理解经济或复杂系统的动态特性。 VAR_多元时间序列分析_var_

1. 多元时间序列分析基础

1.1 时间序列分析的意义

时间序列分析是统计学中分析、建模和预测时间序列数据的数学方法。在IT和金融领域,通过观察过去的数据点来预测未来的市场趋势,对于决策者来说至关重要。多元时间序列分析是这种技术的扩展,它涉及同时处理两个或更多的相关序列,它们的值在时间上互相依赖。

1.2 多元时间序列数据的特点

多元时间序列数据集中的各个时间序列可能存在因果关系或同步行为。例如,在金融市场中,股票价格、利率和货币价值等数据都是典型的多元时间序列。多元时间序列分析的关键在于能够理解和模拟这些序列之间的动态依赖性。

1.3 多元时间序列分析的应用领域

多元时间序列分析广泛应用于经济预测、天气预报、信号处理和股票市场分析等领域。掌握这一技能可以帮助分析师更好地理解复杂系统的内在机制,预测未来事件,并为制定策略提供科学依据。下一章节我们将深入探讨向量自回归模型(VAR),这是处理多元时间序列数据的一个强大工具。

2. 向量自回归模型(VAR)概念

2.1 VAR模型的定义与起源

2.1.1 经济模型中的VAR起源

向量自回归(VAR)模型是由克里斯托弗·西姆斯(Christopher Sims)在1980年代初提出的,最初用于分析多变量时间序列数据,尤其在宏观经济分析领域被广泛应用。VAR模型不同于传统的经济模型,它不依赖于经济理论中的因果关系假设,而是通过统计方法捕捉变量之间的动态关系。

VAR模型的提出,可以看作是对传统单一方程模型的补充。在传统模型中,研究者往往假设某些经济变量是外生的,而VAR则把所有变量都视为内生的,即每个变量都可能受到其他变量的过去值和自身过去值的影响。这种方法的优点在于,它能够更全面地捕捉到数据之间的复杂动态关系,而不受限于特定的经济理论。

2.1.2 VAR与传统时间序列模型的比较

在传统的时间序列模型中,例如自回归模型(AR),移动平均模型(MA),以及自回归移动平均模型(ARMA),通常都是针对单个时间序列进行建模。VAR模型则将这种单变量的分析方法推广到多变量的情况,允许时间序列之间存在相互作用。

VAR模型的每一个方程都包含了所有变量的滞后值,这样一来,VAR模型本质上是一个多变量的滞后模型,它使得每个内生变量都可以通过自身的滞后值以及其它变量的滞后值来预测。这种模型的结构使得它非常适用于捕捉经济系统中变量间的动态影响。

2.2 VAR模型的主要特性

2.2.1 模型结构概述

VAR模型的数学表达式可以表示为一系列方程的集合。假设有一个由变量组成的向量 ( Y_t ),VAR模型中的每一个方程都可以表示为:

[ Y_t = c + \Phi_1 Y_{t-1} + \Phi_2 Y_{t-2} + \dots + \Phi_p Y_{t-p} + u_t ]

其中,( Y_t ) 是 ( t ) 时期的向量,( c ) 是截距项,( \Phi_1, \Phi_2, \dots, \Phi_p ) 是系数矩阵,( p ) 是最大滞后阶数,( u_t ) 是误差向量。

这种结构表明了VAR模型是通过变量自身的滞后项来预测当期值,体现了时间序列的动态性。同时,模型的非限制性质也意味着所有变量都是相互影响的。

2.2.2 模型参数的估计与意义

估计VAR模型参数通常使用最大似然估计(MLE)或者最小二乘法(OLS)。通过估计得到的参数,可以分析系统中各变量之间的动态关系。每个系数都代表了一个变量对另一个变量在不同滞后阶段的影响。

参数估计的准确性和稳定性对于VAR模型的预测能力和解释能力至关重要。因此,在实际应用中,对模型参数的统计检验,如单位根检验、稳定性检验等,都是不可或缺的步骤。

2.2 VAR模型的主要特性

2.2.1 模型结构概述

VAR模型中,多个变量被纳入同一个模型框架中,每个变量都被视为系统中所有其他变量滞后值的函数。这种设定使VAR模型能够捕捉变量之间的动态关系。具体来说,如果我们有三个变量 ( Y_1, Y_2, Y_3 ),一个简单的VAR(1)模型可以表示为:

Y1_t = c1 + Φ11_1 * Y1_(t-1) + Φ12_1 * Y2_(t-1) + Φ13_1 * Y3_(t-1) + ε1_t
Y2_t = c2 + Φ21_1 * Y1_(t-1) + Φ22_1 * Y2_(t-1) + Φ23_1 * Y3_(t-1) + ε2_t
Y3_t = c3 + Φ31_1 * Y1_(t-1) + Φ32_1 * Y2_(t-1) + Φ33_1 * Y3_(t-1) + ε3_t

其中,( Y_t ) 表示时间t的向量,( c ) 代表截距向量,( \Phi ) 代表系数矩阵,( ε_t ) 表示误差项。

2.2.2 模型参数的估计与意义

在VAR模型中,参数的估计主要通过最小化误差项的方差来实现。参数估计完成后,可以通过系数矩阵来分析变量之间的相互影响:

  • 自影响系数 :对角线上的系数,如 ( Φ11_1 ),表明变量自身在过去时刻对其当前值的影响。
  • 交叉影响系数 :非对角线上的系数,如 ( Φ12_1 ),反映了其他变量如何影响当前变量。

具体来说,如果我们关注 ( Y1 ) 对 ( Y2 ) 的影响,我们可以查看系数 ( Φ21_1 )。如果该系数显著不为零,那么我们可以认为 ( Y1 ) 在前一期的变化会对 ( Y2 ) 在当前期产生显著影响。

这种分析的意义在于,它为研究者提供了识别多变量之间潜在因果关系的工具,尽管VAR模型本身并不直接提供因果关系的推断。VAR模型的核心假设是所有变量都是内生的,这意味着变量之间的关系是双向的,任何变量都可能影响其它变量,同时也会受到其它变量的影响。

参数的估计不仅对于VAR模型的预测能力至关重要,而且对于理解模型内部结构和变量之间的动态关系也具有重要意义。例如,在经济政策分析中,通过VAR模型可以估计某项政策变动对经济变量的动态影响路径。

代码块示例:
import numpy as np
import statsmodels.api as sm

# 假设data是一个包含变量Y1, Y2, Y3的NumPy数组
# p是滞后阶数
p = 1
data = ... # 加载数据的代码
model = sm.tsa VAR(data, p)
results = model.fit()

# 打印估计结果
print(results.summary())

以上代码块展示了如何使用statsmodels库来估计一个VAR模型,并打印估计结果。结果的输出通常包括系数估计值、标准误差、t统计量等,通过这些输出可以对模型参数进行进一步的分析。

3. VAR模型的数学表达和特点

3.1 VAR模型的数学基础

3.1.1 线性方程组与矩阵表示

向量自回归(VAR)模型本质上是一个多变量时间序列模型,它可以表示为一系列时间序列变量的线性函数。在数学表达上,VAR模型可以写成一个线性方程组的形式,其中每一个方程对应一个时间序列变量,而每个方程的右侧包含滞后值。这种形式使得VAR模型可以被看作是每个变量对其自身以及其他变量滞后值的反应。

假设我们有一个包含三个时间序列变量的VAR(p)模型,其中p代表最大滞后阶数。该模型可以表示为如下形式的矩阵方程:

[ \mathbf{Y} t = \mathbf{c} + \mathbf{\Phi}_1 \mathbf{Y} {t-1} + \mathbf{\Phi} 2 \mathbf{Y} {t-2} + ... + \mathbf{\Phi} p \mathbf{Y} {t-p} + \mathbf{\epsilon}_t ]

其中: - (\mathbf{Y}_t) 是一个 (n \times 1) 阶的向量,表示在时间点 (t) 的所有变量的取值。 - (\mathbf{c}) 是一个 (n \times 1) 阶的常数向量。 - (\mathbf{\Phi}_1, \mathbf{\Phi}_2, ..., \mathbf{\Phi}_p) 是 (n \times n) 阶系数矩阵,每个矩阵表示对应滞后阶数的变量系数。 - (\mathbf{\epsilon}_t) 是一个 (n \times 1) 阶的误差项向量,假设在不同时间点的误差项是不相关的。

3.1.2 稳定性条件的数学推导

稳定性条件对于VAR模型至关重要,因为它们决定了时间序列的行为。一个稳定的VAR模型意味着,如果系统受到一个冲击,它最终会回到长期的均衡状态,不会导致无限制的指数增长或衰退。

对于VAR模型的稳定性,数学上通常要求所有的根都位于单位圆内,即所有特征值的模都小于1。这可以通过求解VAR模型的特征方程得到:

[ \text{det}(\mathbf{\Phi}(z)) = 0 ]

这里,(\mathbf{\Phi}(z)) 是系数矩阵 (\mathbf{\Phi}) 的多项式,且 (z) 是一个复数变量。对于每一个根 (z_i),如果 (|z_i| < 1) 对于所有的根都成立,则VAR模型是稳定的。

为了保证模型的稳定性,模型设计者通常在估计完VAR模型后,进行特征根的计算和检验。通常使用数学软件包,如R、MATLAB或者Python的NumPy库,进行复数运算和特征值分析。

3.2 VAR模型的独特性分析

3.2.1 内生性与外生性变量

VAR模型中的变量通常被划分为内生和外生两类。在VAR模型的框架内,所有参与内生机制的变量都是内生变量,它们的滞后值会出现在模型的右侧方程中。相对的,外生变量是那些被设定为不受模型内其他变量影响的变量。

在某些情况下,外生变量可以被加入VAR模型以提供更多的解释力。例如,在含有宏观经济变量的模型中,政府政策变量或国际市场变量可能被认定为外生变量。它们可以在模型中以虚拟变量的形式加入,或者作为滞后一期的变量加入,以提供有关外部冲击如何影响内生变量的信息。

3.2.2 滞后阶数选择的理论依据

选择合适的滞后阶数是VAR模型构建过程中的关键决策之一。理论上,模型应该包含足够的滞后项,以便捕捉数据中所有的动态信息。但同时,过多的滞后项会增加模型的复杂度,并可能导致自由度的大量减少。

通常,研究者会使用诸如信息准则(如AIC、BIC)来选择最优的滞后阶数。这些信息准则通过对模型的似然函数值和参数数量进行惩罚,从而平衡模型的拟合优度和简约性。此外,也可以通过脉冲响应函数(IRF)和方差分解来验证滞后阶数选择的合理性。

以下是一段使用Python的statsmodels库进行VAR模型滞后阶数选择的代码示例:

import numpy as np
import pandas as pd
from statsmodels.tsa.api import VAR
from statsmodels.tsa.stattools import adfuller

# 假设df是一个包含时间序列数据的Pandas DataFrame对象
# 检查每个时间序列的平稳性
for column in df.columns:
    result = adfuller(df[column].dropna())
    print('Column: {} ADF Statistic: {} P-Value: {}'.format(column, result[0], result[1]))

# 使用信息准则选择最优滞后阶数
model = VAR(df)
results = model.select_order(15)
print(results.summary())

此代码段首先检查每个变量的平稳性,以确保模型的稳定性。然后使用VAR类的select_order方法,根据信息准则来选择最优的滞后阶数。在实际应用中,研究者应该根据问题的具体情况和理论指导选择滞后阶数。

4. VAR模型在预测中的应用

4.1 预测的理论框架

4.1.1 预测误差的统计特性

预测误差,即预测值与实际观测值之间的差异,是衡量预测模型性能的关键指标。在多元时间序列分析中,VAR模型的预测误差具有特定的统计特性,理解这些特性对于评估模型的预测能力和优化模型具有重要意义。

预测误差通常由两部分组成:系统误差和随机误差。系统误差是由于模型设定不正确导致的,例如忽略了某些重要的变量或者模型形式设定错误。而随机误差则是由模型无法解释的随机扰动项引起的,这部分误差在理论上应当符合白噪声序列的性质,即具有零均值、恒定方差且各期之间互不相关。

在VAR模型中,预测误差的协方差矩阵可以用来评估预测的不确定性。对于多元时间序列,预测误差的协方差矩阵不仅受到模型参数的影响,还与预测的期限和变量间的相互依赖性有关。因此,理解和计算预测误差的协方差矩阵是VAR模型在预测应用中的重要一环。

4.1.2 预测精度的评估方法

预测精度是指预测结果的准确程度,它可以通过不同的指标进行评估,常见的有均方误差(MSE)、均方根误差(RMSE)、平均绝对误差(MAE)和平均绝对百分比误差(MAPE)等。选择合适的评估指标有助于准确衡量预测模型的性能。

  • 均方误差(MSE)和均方根误差(RMSE)关注的是预测误差的平均平方值,前者是平方和的平均,后者是平方和平均后的平方根。MSE和RMSE对较大误差的惩罚更重,因此它们更适合评价预测模型对异常值的敏感性。

  • 平均绝对误差(MAE)计算的是预测误差的平均绝对值,这是一个直观的误差度量,对于异常值的惩罚不像MSE和RMSE那么严重,但仍然能够有效地反映预测的准确性。

  • 平均绝对百分比误差(MAPE)则将预测误差转换为相对误差的百分比形式。MAPE有助于在不同规模的数据上进行比较,但它在预测值接近零时可能会出现数值不稳定的情况。

在实际应用中,通常会结合多个指标来全面评估预测模型的精度。此外,通过留出一部分数据进行测试,可以更客观地评估模型在未知数据上的表现。交叉验证是一种更严格的评估方法,它可以减少由于数据分割不同带来的评估结果的偏差。

4.2 实际案例分析

4.2.1 经济指标预测实例

以宏观经济指标的预测为例,一个典型的经济指标是GDP增长率。通过构建VAR模型,研究者可以将GDP增长率与其他宏观经济指标(如通货膨胀率、失业率、利率等)联系起来,从而实现对未来经济走势的预测。

构建VAR模型的第一步是确定模型中的变量及其滞后阶数。这通常通过信息准则(如AIC、BIC)来确定最佳滞后阶数。在确定了模型的结构后,通过估计模型参数来捕捉各变量间的动态关系。

在模型估计完成后,可以利用历史数据进行训练,并进行预测。通过将历史数据作为输入,模型输出预测值,并将其与实际值进行比较,从而评估模型的预测精度。在此过程中,可以计算MSE、RMSE、MAE和MAPE等指标,以评价模型的表现。

例如,假设我们使用2000年至2020年的季度数据构建了一个VAR模型,并预测2021年的GDP增长率。预测结果可以通过与实际发布的数据进行比较,以评估模型的准确性。如果预测误差在可接受的范围内,那么模型就可以用于未来一段时间内的趋势预测。

4.2.2 金融市场的应用

金融市场是时间序列分析特别是VAR模型应用的另一个重要领域。在金融市场中,资产价格、交易量、市场指数等多种金融指标往往存在复杂的动态关系,VAR模型可以用来捕捉这些指标之间的内生性关系,从而对未来的市场走势进行预测。

在金融市场预测中,VAR模型可以结合波动性模型,如GARCH模型,来更好地描述金融时间序列的波动聚集和杠杆效应。这样可以提高对金融市场风险的评估和预测准确性。

例如,可以构建一个包含股票指数、利率、汇率和债券收益率的VAR模型,用于预测各金融指标的变化趋势。通过分析这些指标的历史数据,VAR模型可以识别出变量间的短期和长期关系,并利用这些关系对未来数据进行预测。

在实际操作中,分析师首先需要确定模型中的变量和滞后阶数,并通过统计检验来验证变量间的显著关系。模型参数估计后,分析师可以利用模型来进行短期预测,并根据预测结果做出相应的投资决策。

此外,VAR模型在金融市场中的应用不仅限于预测,还可以用于风险管理和市场分析。例如,通过VAR模型可以量化资产组合的风险,计算在不同置信水平下的最大潜在损失。

在金融市场预测中,VAR模型的预测精度同样需要通过预测误差的统计特性来进行评估。由于金融市场数据的噪声大、非线性特征明显,因此在模型评估和优化时需要特别注意数据的预处理和模型的稳健性。

以上就是第四章“VAR模型在预测中的应用”的内容。在这一章中,我们首先介绍了预测的理论框架,包括预测误差的统计特性和预测精度的评估方法。之后,通过实际案例分析,我们探讨了VAR模型在宏观经济指标和金融市场预测中的应用。希望本章能够帮助读者更好地理解VAR模型在时间序列预测中的应用价值和实践方法。

5. 协整关系的识别

5.1 协整的定义与经济意义

5.1.1 非平稳序列与协整概念

在时间序列分析中,非平稳序列是指其统计特性(如均值、方差)随时间变化的序列。由于非平稳序列的这些特性,直接使用传统的统计方法进行分析和预测可能会导致误导性的结论。协整关系的出现解决了这一问题,它为非平稳时间序列分析提供了理论基础。

协整的概念是由Granger和Engle于上世纪80年代提出,用于描述两个或多个非平稳时间序列之间的长期稳定关系。如果一组非平稳的时间序列中每个序列本身都不是协整的,但它们的某种线性组合却呈现出平稳性,那么我们称这些序列是协整的。协整关系的存在说明这些非平稳序列之间存在某种“平衡机制”,使得它们的相对变化之间保持稳定。

5.1.2 协整向量的意义与经济解释

协整向量是指在协整关系中,将非平稳序列线性组合成平稳序列的系数向量。协整向量的存在具有重要的经济意义。例如,在金融市场中,两种资产的价格可能随时间波动呈现出非平稳性,但如果它们的价格序列之间存在协整关系,则说明它们的价格之间存在长期均衡关系。即使短期内价格出现偏离,长期来看它们会自动调整以恢复均衡状态。

经济解释方面,协整关系可以用来分析变量间是否存在长期的稳定关系,比如货币供应量与国民生产总值(GDP)之间的关系、股市价格与宏观经济指标的关系等。这在政策制定、市场分析和风险控制等方面具有重要的应用价值。

5.2 协整检验的实施步骤

5.2.1 协整检验的方法论

实施协整检验的常用方法有Engle-Granger两步法和Johansen检验方法。Engle-Granger两步法简单直观,适用于两个时间序列之间的协整关系检验;而Johansen检验则适用于多个时间序列的协整关系检验,是一种更为全面和灵活的多变量协整检验方法。

在进行协整检验前,首先需要确定时间序列的单位根检验结果,通常采用ADF(Augmented Dickey-Fuller)检验来确认序列是否具有单位根。一旦确认序列是非平稳的,接下来就可以进行协整检验。

5.2.2 实证分析与结果解读

在实际应用中,对协整关系的实证分析通常包括以下步骤:

  1. 数据准备:收集并准备时间序列数据,对数据进行初步的统计分析。
  2. 单位根检验:对序列进行ADF检验,确认是否具有单位根,即序列是否非平稳。
  3. 协整检验:根据序列数量选择合适的协整检验方法(如Engle-Granger或Johansen方法)。
  4. 模型估计:如果存在协整关系,估计协整向量和长期均衡方程。
  5. 结果分析:对协整检验的结果进行分析,验证长期均衡关系的存在性。

结果解读方面,如果协整检验结果表明序列之间存在协整关系,那么我们可以构建误差修正模型(ECM),它能够捕捉到短期偏离长期均衡的动态调整过程。如果不存在协整关系,则不能直接将这些序列用于长期预测和分析。

实证分析常常涉及复杂的统计软件和编程工具。以Python为例,我们可以利用 statsmodels 库中的 coint 函数进行协整检验。以下是一个简单的代码示例:

import statsmodels.api as sm
from statsmodels.tsa.stattools import coint

# 假设 y 和 x 是两个需要检验协整关系的时间序列
y = # ... (时间序列数据)
x = # ... (时间序列数据)

# 进行ADF单位根检验
adf_result = sm.tsaADF(y, trend='c', maxlag=10)
print('ADF test statistic:', adf_result[0])
print('Critical values:', adf_result[4])

# 进行协整检验
coint_result = coint(y, x)
print('Cointegration test statistic:', coint_result[0])
print('Critical values:', coint_result[4])

在上述代码中, coint 函数返回的是一个元组,其中第一个元素是协整检验的统计量,第二个元素是一个包含不同显著性水平下临界值的元组。如果统计量大于临界值,则拒绝原假设,即序列间存在协整关系。

通过以上步骤和分析,研究者和分析师能够有效地识别和利用时间序列间的长期均衡关系,为经济决策提供更可靠的理论依据。

6. VAR模型的高级分析与实现

6.1 格兰杰因果关系检验

6.1.1 因果关系的概念界定

格兰杰因果关系检验是分析时间序列数据中一个时间序列是否可以预测另一个时间序列的检验方法。它不是严格意义上的因果关系,而是一种预测能力的比较。一个时间序列X被认为是另一个时间序列Y的格兰杰原因,如果X在预测Y时能提供额外的信息。

6.1.2 检验的步骤与实际应用

要进行格兰杰因果检验,通常需要执行以下步骤: 1. 平稳性检验,以确保序列是平稳的,或者通过差分后平稳。 2. 确定最优滞后阶数。 3. 执行格兰杰因果检验。 4. 解读p值,评估变量间的因果关系。

在实际应用中,格兰杰因果关系检验可以用来分析不同宏观经济指标之间的相互关系,如利率和GDP增长之间的关系。

6.2 脉冲响应函数与方差分解

6.2.1 脉冲响应函数的经济含义

脉冲响应函数描述了在VAR模型中,当误差项发生变化时,系统中各个变量随时间的响应情况。简而言之,它显示了一个变量是如何被一个创新冲击(即一个标准差的变化)所影响的,并且这种影响是如何在时间上传播的。

6.2.2 方差分解在VAR模型中的作用

方差分解用于分析VAR模型中的每一个结构冲击对内生变量的贡献度。它将系统内每个变量的预测误差的方差分解为对各方程新息的相对贡献。这有助于理解哪些变量在解释其他变量的波动上扮演更重要的角色。

6.3 使用Python实现VAR模型的具体步骤

6.3.1 编程环境与库的搭建

要使用Python实现VAR模型,首先需要搭建适当的编程环境并安装相关的库: - Python环境(推荐使用Anaconda,因为它包含大量科学计算所需的库)。 - 安装pandas、numpy、statsmodels和matplotlib等库,这些库可通过pip轻松安装。

6.3.2 代码实现与结果展示

以下是使用statsmodels库实现VAR模型的一个简单示例:

import pandas as pd
import numpy as np
import statsmodels.api as sm
from statsmodels.tsa.api import VAR
import matplotlib.pyplot as plt

# 假设df是一个pandas DataFrame,包含了时间序列数据
# 这里我们用一个假设的数据框来代替
df = pd.DataFrame(np.random.randn(100, 2), columns=['Series1', 'Series2'])

# 实例化VAR模型
model = VAR(df)

# 拟合模型,可以选择最优的滞后阶数
results = model.fit(maxlags=10, ic='aic')

# 输出VAR模型的估计结果
print(results.summary())

# 进行预测
pred = results.forecast(model.y, steps=10)

# 绘制预测结果
pred_df = pd.DataFrame(pred, index=range(len(df), len(df)+10), columns=df.columns)
pred_df.plot()
plt.show()

以上代码首先创建了一个含有两个随机时间序列的数据框,然后实例化并拟合了一个VAR模型,最后进行了预测并绘制了结果。

以上各节的内容涉及到具体操作,包括统计检验、预测、编程实现等,旨在为读者提供一个完整的VAR模型理解和应用框架。通过以上的章节,读者应该能够把握VAR模型的核心概念、理论依据及实际操作方法。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:多元时间序列分析是处理相互关联时间序列数据的重要方法,其核心工具向量自回归模型(VAR)能够揭示变量间的动态关系。VAR模型允许同时考虑多个变量的影响,通过滞后值的线性函数来捕捉它们的相互作用。该模型在预测、协整关系分析、格兰杰因果关系检验、脉冲响应函数分析及方差分解方面具有应用价值。本教程将指导如何使用Python实现VAR模型,并进行相关统计分析,以深入理解经济或复杂系统的动态特性。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值