用ResNet对CIFAR数据集进行图像分类

CIFAR数据集的导入

CIFAR-10数据集有60000张32*32的彩色图片,总共10类,每一类有6000张图片。分为50000张训练集和10000张测试集
在torchvision包中可以非常方便地直接导入cifar数据集
在这里插入图片描述
输入dataroot,是否是训练集,transform等参数。
transform参数一般传入transforms.Compose([])进行一些变换
这里就可以从网上下载得到CIFAR的原始数据集了

cifar_train=datasets.CIFAR10('cifar',True,transform=transforms.Compose([
        transforms.Resize((32,32)),
        transforms.ToTensor()
    ]),download=True)

在程序中导入数据的时候,一般用到dataloader类,主要是指定导入的batchsize,导入时需不需要随机化处理

cifar_train=DataLoader(cifar_train,batch_size=batchsz,shuffle=True)

以上就是训练集数据的准备,测试集数据的准备同理

cifar_test = datasets.CIFAR10('cifar', False, transform=transforms.Compose([
        transforms.Resize((32, 32)),
        transforms.ToTensor()
    ]), download=True)
    cifar_test = DataLoader(cifar_test, batch_size=batchsz, shuffle=True)

测试一下数据集:
用iter得到dataloader的迭代器,用next返回一个迭代对象。打印出数据的shape

x,label=iter(cifar_train).next()
print('x:',x.shape,'label:',label.shape)
out

LeNet5的实现和实验

在这里插入图片描述
网络结构和前向传播:
根据网络结构,首先经过两个卷积层,每个卷积层包含一个卷积操作和一次下采样(改为了pooling操作),经过两次操作之后得到的结构为[b,16,5,5]之后用view函数进行flatten操作得到[b,1655]最后经过两个线性层得到[b,10]可以得到分类结果。

    def __init__(self):
        super(Lenet5, self).__init__()
        self.conv_unit = nn.Sequential(
            # x:[b,3,32,32]=>[b,6,,]
            nn.Conv2d(3, 6, kernel_size=5, stride=1, padding=0),
            nn.AvgPool2d(kernel_size=2, stride=2, padding=0),
            # 第二个卷积层
            nn.Conv2d(6, 16, kernel_size=5, stride=1, padding=0),
            nn.AvgPool2d(kernel_size=2, stride=2, padding=0),
        )
        # flatten [b,16,5,5]
        # fc unit
        self.fc_unit = nn.Sequential(
            nn.Linear(16*5*5, 120),
            nn.ReLU(),
            nn.Linear(120, 84),
            nn.ReLU(),
            nn.Linear(84, 10)
        )
        # test code
        tmp = torch.randn(2, 3, 32, 32)
        out = self.conv_unit(tmp)
        # [b,16,5,5]
        print('conv out', out.shape)

        # use crossEntropyLoss softmax first
        # self.criteon=nn.CrossEntropyLoss()

    def forword(self,x):
        """

        :param x: [b,3,32,32]
        :return:
        """
        batchsz=x.size(0)# eq s.shape[0]
        # [b,3,32,32]=>[b,16,5,5]
        x=self.conv_unit(x)
        # [b,16,5,5]=>[b,16*5*5]
        x=x.view(batchsz,16*5*5)
        # [b,16*5*5] => [b,10]
        logits=self.fc_unit(x)

写完了向前传播的代码之后可以在main类中写一个randn数据集来传播一下看看输出的shape作为测试。

def main():
    net = Lenet5()
    tmp = torch.randn(2, 3, 32, 32)
    out = net(tmp)
    # [b,16,5,5]
    print('conv out', out.shape)
# conv out torch.Size([2, 10])

训练模型,在每个batchsize里更新一次梯度信息。
一个epoch结束(即所有batch都训练完)输出模型的损失。用当前模型进行一次前向test,在test中不需要记录梯度信息。

 device = torch.device('cuda')
    model = Lenet5().to(device)
    criteon = nn.CrossEntropyLoss().to(device)  # 包含了softmax
    optimizer = optim.Adam(model.parameters(), lr=1e-3)
    print(model)
    for epoch in range(1000):
        model.train()
        for batchIndex, (x, label) in enumerate(cifar_train):
            # [b,3,32,32]
            # [b]
            x, label = x.to(device), label.to(device)
            logits = model(x)
            # logits:[b,10]
            # label:[b] 注意这里label可以不用给每个维度的probability
            loss = criteon(logits, label)

            # backprop
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
        #
        print(epoch, loss.item())

        # 测试的时候不需要反向传播
        # 因此不需要计算梯度信息
        model.eval()
        with torch.no_grad():
            # test
            total_correct = 0
            total_num = 0
            for x, label in cifar_test:
                x, label = x.to(device), label.to(device)
                # [b,10]
                logits = model(x)
                # argmax 返回一个维度上数据最大值的索引
                # max 返回一个维度上最大的数据
                pred = logits.argmax(dim=1)
                # 比较一个batchsize中pred和label相同的个数
                total_correct += torch.eq(pred, label).float().sum().item()
                total_num+=x.size(0)

            acc=total_correct/total_num
            print(epoch,acc)

用ResNet实现

在这里插入图片描述
首先实现一个block

class ResBlock(nn.Module):
    """
    redNet block
    """

    def __init__(self, ch_in, ch_out):
        """

        :param ch_in:
        :param ch_out:
        """
        super(ResBlock, self).__init__()

        self.conv1 = nn.Conv2d(ch_in, ch_out, kernel_size=3, stride=1, padding=1)
        self.bn1 = nn.BatchNorm2d(ch_out)
        self.conv2 = nn.Conv2d(ch_out, ch_out, kernel_size=3, stride=1, padding=1)
        self.bn2 = nn.BatchNorm2d(ch_out)

        self.extra=nn.Sequential()
        # 如果out和in的channel不相同则用一个卷积使之相同
        if ch_out!=ch_in:
            # [b,ch_in,h,w] => [b,ch_out,h,w]
            self.extra=nn.Sequential(
                nn.Conv2d(ch_in,ch_out,kernel_size=1,stride=1),
                nn.BatchNorm2d(ch_out)
            )

    def forward(self, x):
        """

        :param x: [b,ch,h,w]
        :return:
        """
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.bn2(self.conv2(out))
        # short cut
        # element-wight add:[b,ch_in,h,w] with [b,ch_out,h,w]
        out=self.extra(x)+out
        return out

实现一个ResNet18,有四个这样的block结构构成,最后连一个全连接层

class ResNet18(nn.Module):

    def __init__(self):
        super(ResNet18, self).__init__()

        self.conv1 = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(64)
        )
        # followed 4 blocks
        # [b,64,h,w]=>[b,128,h,w]
        self.blk1 = ResBlock(64, 64)
        # [b,128,h,w]=>[b,256,h,w]
        self.blk2 = ResBlock(64, 128)
        # [b,256,h,w]=>[b,512,h,w]
        self.blk3 = ResBlock(128, 256)
        # [b,512,h,w]=>[b,1024,h,w]
        self.blk4 = ResBlock(256, 512)

        self.outlater = nn.Linear(512 * 32 * 32, 10)

    def forward(self, x):
        """

        :param x:
        :return:
        """
        x = F.relu(self.conv1(x))
        # [b,64,h,w] => [b,1024,h,w]
        x = self.blk1(x)
        x = self.blk2(x)
        x = self.blk3(x)
        x = self.blk4(x)

        x = x.view(x.size(0), -1)  # flatten
        x = self.outlater(x)
        return x

如果网络参数太多跑不动,可以减少block的数量
在main文件中将模型改为ResNet18,其余部分不变,即可训练此网络。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值