InfoNCE损失

InfoNCE(Information Noise-Contrastive Estimation)损失是一种常用于对比学习的损失函数。它的核心思想是通过最大化相似样本对的相似度,最小化不相似样本对的相似度,从而学习到有意义的表示。以下是对InfoNCE损失的详细解释。

InfoNCE损失的定义

InfoNCE损失基于噪声对比估计的思想,用于训练模型来区分正样本对和负样本对。它的公式通常表示如下:
L = − 1 N ∑ i = 1 N log ⁡ exp ⁡ ( sim ( z i , z i + ) ) exp ⁡ ( sim ( z i , z i + ) ) + ∑ j = 1 K exp ⁡ ( sim ( z i , z j − ) ) L = -\frac{1}{N} \sum_{i=1}^{N}\log\frac{\exp(\text{sim}(\mathbf{z}_i, \mathbf{z}_i^+))}{\exp(\text{sim}(\mathbf{z}_i,\mathbf{z}_i^+))+ \sum_{j=1}^{K}\exp(\text{sim}(\mathbf{z}_i, \mathbf{z}_j^-))} L=N1i=1Nlogexp(sim(zi,z

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

超大青花鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值