05:极限-无穷小

1.无穷小的概念及比较

定义: lim ⁡ x → x 0 f ( x ) = 0 , 则称 f ( x ) 是 x = x 0 时的无穷小 定义: \lim_{x \to x_0} f(x) =0,则称f(x)是x=x_0时的无穷小 定义:xx0limf(x)=0,则称f(x)x=x0时的无穷小

性质Value
有限个无穷小相加还是无穷小
有界变量乘以无穷小还是无穷小
导管$1

有界函数:

有界类型
sin△及其反函数
cos△及其反函数
arctan△
arccot△

例1: 求 lim ⁡ n → x 0 x ⋅ s i n 1 x 极限 求 \lim_{n \to x_0} x·sin \frac{1}{x} 极限 nx0limxsinx1极限
解: ∵ s i n 1 x 为有界函数,有界 ⋅ 0 = 0 , ∴ lim ⁡ n → x 0 x ⋅ s i n 1 x = 0 解:∵sin \frac{1}{x} 为有界函数,有界·0=0, ∴\lim_{n \to x_0} x·sin \frac{1}{x}=0 解:sinx1为有界函数,有界0=0,nx0limxsinx1=0

1.2无穷小的阶的比较

x->x0时,α(x)->0, β(x)->0

lim ⁡ x → x 0 α ( x ) β ( x ) = { 0 α ( x ) 是 β ( x ) 的高阶无穷小,记作: α ( x ) = o β ( x ) 1 α ( x ) 是 β ( x ) 的等价无穷小,记作: α ( x ) ∽ β ( x ) A ( A ≠ 0 ) α ( x ) 是 β ( x ) 的同阶无穷小 ∞ , α(x)是β(x)的低阶无穷小 \lim_{x \to x_0} \frac{α(x)}{β(x)} = \begin{cases} 0 & α(x)是β(x)的高阶无穷小,记作:α(x)=oβ(x) \\[2ex] 1 & α(x)是β(x)的等价无穷小,记作:α(x)\backsimβ(x) \\[2ex] A(A≠0) & α(x)是β(x)的同阶无穷小 \\[2ex] \infty, & \text{α(x)是β(x)的低阶无穷小} \\ \end{cases} xx0limβ(x)α(x)= 01A(A=0),α(x)β(x)的高阶无穷小,记作:α(x)=oβ(x)α(x)β(x)的等价无穷小,记作:α(x)β(x)α(x)β(x)的同阶无穷小α(x)β(x)的低阶无穷小

例 1 : x = 1 , α ( x ) = x 2 − 1 , β ( x ) = 2 x 2 − x − 1 lim ⁡ x → 1 x 2 − 1 2 x 2 − x − 1 = lim ⁡ x → 1 ( x − 1 ) ( x + 1 ) ( x − 1 ) ( 2 x + 1 ) = lim ⁡ x → 1 x + 1 2 x + 1 = 2 3 ∴ α ( x ) 是 β ( x ) 的同阶无穷小 \begin{align*} 例1: &x=1,α(x)=x^2-1, β(x)=2x^2-x-1 \\ & \lim_{x \to 1} \frac{x^2-1}{2x^2-x-1}\\ &= \lim_{x \to 1} \frac{(x-1)(x+1)}{(x-1)(2x+1)} \\ & = \lim_{x \to 1} \frac{x+1}{2x+1} \\ & ={\frac{2}{3}} \\ & ∴α(x)是β(x)的同阶无穷小 \\ \end{align*} 1x=1,α(x)=x21,β(x)=2x2x1x1lim2x2x1x21=x1lim(x1)(2x+1)(x1)(x+1)=x1lim2x+1x+1=32α(x)β(x)的同阶无穷小

1.3 等价无穷小的替换(9类)只针对 0 0 型 \frac{0}{0}型 00

前提: △ → 0 △\rightarrow0 0

项目函数类型
sin△=△
arcsin△=△
tan△=△
arctan△=△
e △ − 1 = △ e^△-1=△ e1=
ln ⁡ ( 1 + △ ) = △ \ln(1+△)=△ ln(1+)=
1-cos△= 1 2 △ 2 \frac{1}{2}△^2 212
a △ − 1 = △ ⋅ ln ⁡ a a^△-1=△·\ln a a1=lna
( 1 + △ ) a − 1 = a ⋅ △ (1+△)^a-1=a·△ (1+)a1=a
tan ⁡ △ − cos ⁡ △ = 1 2 △ 3 \tan△-\cos△=\frac{1}{2}△^3 tancos=213

例 1 : lim ⁡ x → 0 1 + x 2 − 1 1 − c o s x = lim ⁡ x → 0 1 + x 2 − 1 1 2 x 2 = lim ⁡ x → 0 ( 1 + x 2 ) 1 2 − 1 1 2 x 2 = lim ⁡ x → 0 1 2 x 2 1 2 x 2 = 1 \begin{align*} 例1: & \lim_{x \to 0} \frac{\sqrt{1+x^2}-1}{1-cosx}\\ &= \lim_{x \to 0} \frac{\sqrt{1+x^2}-1}{ \frac{1}{2}x^2} \\ & = \lim_{x \to 0} \frac{(1+x^2)^\frac{1}{2}-1}{ \frac{1}{2}x^2}\\ & =\lim_{x \to 0} \frac{\frac{1}{2}x^2}{\frac{1}{2}x^2} \\ & =1\\ \end{align*} 1x0lim1cosx1+x2 1=x0lim21x21+x2 1=x0lim21x2(1+x2)211=x0lim21x221x2=1

例 2 : lim ⁡ x → 0 tan ⁡ x − cos ⁡ x x 3 = lim ⁡ x → 0 tan ⁡ x ⋅ ( 1 − cos ⁡ x ) x 3 = lim ⁡ x → 0 1 2 x 3 x 3 = 1 2 \begin{align*} 例2: & \lim_{x \to 0} \frac{\tan x-\cos x}{x^3}\\ &= \lim_{x \to 0} \frac{\tan x·(1- \cos x)}{x^3}\\ & = \lim_{x \to 0} \frac{\frac{1}{2}x^3}{x^3}\\ & = \frac{1}{2}\\ \end{align*} 2x0limx3tanxcosx=x0limx3tanx(1cosx)=x0limx321x3=21

例 3 : lim ⁡ x → 0 2 − 1 + cos ⁡ x sin ⁡ 2 x = lim ⁡ x → 0 ( 2 − 1 + cos ⁡ x ) ⋅ ( 2 + 1 + cos ⁡ x ) ( x 2 ) ⋅ ( 2 + 1 + cos ⁡ x ) = lim ⁡ x → 0 2 − ( 1 + cos ⁡ x ) x 2 ⋅ ( 2 + 1 + cos ⁡ x ) = lim ⁡ x → 0 1 − cos ⁡ x x 2 ⋅ ( 2 + 1 + cos ⁡ x ) = lim ⁡ x → 0 1 2 x 2 x 2 ⋅ ( 2 + 1 + cos ⁡ x ) = lim ⁡ x → 0 1 2 2 + 1 + cos ⁡ x = 2 8 \begin{align*} 例3: & \lim_{x \to 0} \frac{\sqrt 2-\sqrt {1+\cos x}}{\sin^2 x}\\ &= \lim_{x \to 0} \frac{(\sqrt 2-\sqrt {1+\cos x})·{(\sqrt 2+\sqrt {1+\cos x})}}{ (x^2)·(\sqrt 2+\sqrt {1+\cos x})}\\ & = \lim_{x \to 0} \frac{2-(1+\cos x)}{ x^2·(\sqrt 2+\sqrt {1+\cos x})}\\ & = \lim_{x \to 0} \frac{1-\cos x}{ x^2·(\sqrt 2+\sqrt {1+\cos x})}\\ & = \lim_{x \to 0} \frac{\frac{1}{2}x^2}{ x^2·(\sqrt 2+\sqrt {1+\cos x})}\\ & = \lim_{x \to 0} \frac{\frac{1}{2}}{ \sqrt 2+\sqrt {1+\cos x}}\\ & = \frac{\sqrt 2}{8}\\ \end{align*} 3x0limsin2x2 1+cosx =x0lim(x2)(2 +1+cosx )(2 1+cosx )(2 +1+cosx )=x0limx2(2 +1+cosx )2(1+cosx)=x0limx2(2 +1+cosx )1cosx=x0limx2(2 +1+cosx )21x2=x0lim2 +1+cosx 21=82

例 4 : lim ⁡ x → 0 ( 1 +   t a n x n − 1 ) ⋅ ( 1 + x − 1 ) 2 x ⋅ sin ⁡ x = lim ⁡ x → 0 1 n tan ⁡ x ⋅ 1 2 x 2 x ⋅ sin ⁡ x = lim ⁡ x → 0 1 n x ⋅ 1 2 x 2 x 2 = lim ⁡ x → 0 1 2 n x 2 2 x 2 = 1 4 n \begin{align*} 例4: & \lim_{x \to 0} \frac{(\sqrt [n]{1+\ tan x}-1)·(\sqrt {1+x}-1)}{2x·\sin x}\\ &= \lim_{x \to 0} \frac{\frac{1}{n}\tan x·\frac{1}{2}x}{2x·\sin x}\\ & =\lim_{x \to 0} \frac{\frac{1}{n} x·\frac{1}{2}x}{2x^2}\\ & = \lim_{x \to 0} \frac{\frac{1}{2n} {x^2}}{2x^2}\\ & = \frac{1}{4n} \end{align*} 4x0lim2xsinx(n1+ tanx 1)(1+x 1)=x0lim2xsinxn1tanx21x=x0lim2x2n1x21x=x0lim2x22n1x2=4n1

例 5 : lim ⁡ x → 0 e tan ⁡ x − e sin ⁡ x x 3 = lim ⁡ x → 0 e sin ⁡ x ( e tan ⁡ x − sin ⁡ x − 1 ) x 3 = lim ⁡ x → 0 e sin ⁡ x ⋅ ( tan ⁡ x − sin ⁡ x ) x 3 = lim ⁡ x → 0 e sin ⁡ x ⋅ 1 2 x 3 x 3 = lim ⁡ x → 0 1 2 e sin ⁡ x = 1 2 思路: ①对于底或指数相同的,提取后一项 ② e tan ⁡ x − sin ⁡ x − 1 要联想到 e △ − 1 = △ \begin{align*} 例5: & \lim_{x \to 0} \frac{e^{\tan x}-e^{\sin x}}{x^3}\\ &= \lim_{x \to 0} \frac{e^{\sin x}(e^{\tan x-\sin x}-1)}{x^3}\\ & = \lim_{x \to 0} \frac{e^{\sin x}·(\tan x-\sin x)}{x^3}\\ & = \lim_{x \to 0} \frac{e^{\sin x}·\frac{1}{2}x^3}{x^3}\\ & =\lim_{x \to 0} \frac{1}{2}e^{\sin x} \\ & =\frac{1}{2} \\ 思路:& ①对于底或指数相同的,提取后一项 \\ & ② e^{\tan x-\sin x} -1要联想到 e^△-1=△ \end{align*} 5思路:x0limx3etanxesinx=x0limx3esinx(etanxsinx1)=x0limx3esinx(tanxsinx)=x0limx3esinx21x3=x0lim21esinx=21对于底或指数相同的,提取后一项etanxsinx1要联想到e1=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值