无穷小量是以 0 为极限的函数, 而不同的无穷小量收敛于 0 的速度有快有慢.
为此,我们考察两个无穷小量的比, 以便对它们的收敛速度作出判断.
设当 x → x 0 x \rightarrow x_{0} x→x0 时, f f f 与 g g g 均为无穷小量.
一、高阶无穷小量、低阶无穷小量
若 lim x → x 0 f ( x ) g ( x ) = 0 \lim \limits_{x \rightarrow x_{0}} \cfrac{f(x)}{g(x)}=0 x→x0limg(x)f(x)=0, 则称当 x → x 0 x \rightarrow x_{0} x→