数学分析(三)-函数极限5-无穷小量与无穷大量2-无穷小量阶的比较3:等价无穷小【若lim_{x→x₀}[f(x)/g(x)]=1,则称f与g为当x→x₀时的等价无穷小量】【乘除因子利用其替换求极限】

本文深入探讨了数学分析中的等价无穷小量概念,通过定理3.12阐述了等价无穷小量在极限计算中的应用,并通过两个具体的例子展示了如何利用等价无穷小量进行极限求解,强调了在使用等价无穷小量替代时的注意事项。
摘要由CSDN通过智能技术生成

无穷小量是以 0 为极限的函数, 而不同的无穷小量收敛于 0 的速度有快有慢.

为此,我们考察两个无穷小量的比, 以便对它们的收敛速度作出判断.

设当 x → x 0 x \rightarrow x_{0} xx0 时, f f f g g g 均为无穷小量.

三、等价无穷小量

lim ⁡ x → x 0 f ( x ) g ( x ) = 1 \lim \limits_{x \rightarrow x_{0}} \cfrac{f(x)}{g(x)}=1 xx0limg(x)f(x)=1,则称 f f f g g g 是当 x → x 0 x \rightarrow x_{0} xx0 时的等价无穷小量. 记作

f ( x ) ∼ g ( x ) ( x → x 0 ) . f(x) \sim g(x)\left(x \rightarrow x_{0}\right) . f(x)g(x)(xx0).

例如, 由于 lim ⁡ x → 0 sin ⁡ x x = 1 \lim \limits_{x \rightarrow 0} \cfrac{\sin x}{x}=1 x0limxsinx=1, 故有 sin ⁡ x ∼ x ( x → 0 ) \sin x \sim x(x \rightarrow 0) sinxx(x0). 又由于 lim ⁡ x → 0 arctan ⁡ x x = 1 \lim \limits_{x \rightarrow 0} \cfrac{\arctan x}{x}=1 x0limxarctanx=1 (上节习题 1 (6)), 故有 arctan ⁡ x ∼ x ( x → 0 ) \arctan x \sim x(x \rightarrow 0) arctanxx(x0).

以上讨论了两个无穷小量阶的比较. 但应指出,并不是任何两个无穷小量都可以进行这种阶的比较. 例如, 当 x → 0 x \rightarrow 0 x0时, x sin ⁡ 1 x x \sin \cfrac{1}{x} xsinx1 x 2 x^{2}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值