摘要——世界人口正处于独特且不可逆转的老龄化进程之中。秋季是老年人独立生活的主要健康威胁和障碍之一,将加剧全球老年人保健和伤害救援的压力。因此,非常需要自动跌倒检测。当前提议的跌倒检测系统要么需要硬件安装,要么扰乱人们的日常生活。这些限制使得很难在住宅环境中广泛部署跌倒检测系统。在这项工作中,我们分析了考虑人类活动影响的无线信号传播模型。然后,我们提出了一种基于先进无线技术的新颖且真正不引人注目的检测方法,我们称之为 WiFall。 WiFall 使用信道状态信息 (CSI) 的时间可变性和特殊多样性作为人类活动的指标。由于 CSI 在流行的使用中的无线基础设施中很容易获得,WiFall 不再需要硬件修改、环境设置以及穿戴或携带的设备。我们在配备商用 802.11n NIC 的笔记本电脑上实施 WiFall。研究了两种典型的室内场景和几种布局方案。实验结果表明,WiFall 检测精度达到 87%,误报率平均为 18%
学习阶段有四个模块,分别是数据处理、异常检测、活动分类和反馈。 它们在应用服务器上实现。 首先需要数据过滤技术,因为无线信号也会受到温度、气压和湿度等环境变化的影响。 然后应用移动平均来减少数据中的噪声。
1)数据处理:CSI在30个子载波和9个流中采集,体现了信号在频率和空间上的多样性。 我们分析 CSI 的属性并选择最好的进行检测。 此外,除人类活动外,CSI 还受到环境噪声的轻微影响。 为了减少噪音,我们用加权移动平均来平滑 CSI。 2)异常检测:静态人体不影响时域CSI。 人类活动,如走、坐、起和跌倒是活跃的,会导致CSI的方差。 与静止相比,人类活动可视为异常。 并被异常检测算法检测到。3)活动分类:几个人体运动会导致CSI的异常模式。 通过异常检测很难区分它们。 所以需要更多的特征,我们使用一类支持向量机算法来识别其他人体运动的跌倒。
基于这两个观察,我们将 30 个子载波中的 CSI 聚合为一个单值 CSIi(i 是流编号)。 可以采用几种方法。 一种简单的方法是获得五个连续子载波的平均 CSI。 最后,我们在一个时间点得到九个 CSI 值。
引入局部异常因子(LOF)作为异常检测的可疑分数。 LOF 首先由 Markus M. Breunig 等人提出。 [19] 通过测量给定数据点相对于其 k 最近邻点的局部密度来寻找异常数据点。 局部密度是通过从其邻居可以到达某个点的特定距离来估计的
The experiments are conducted in three scenarios: chamber, laboratory and dormitory. Activities set tested in chamber is {sit, stand up, fall}. Activities set tested in the remaining two scenarios are {walk, sit, stand up, fall}.