Arxiv, 2024 | 无线感知安全领域全面综述 A Survey of Wireless Sensing Security from a Role-Based View: Victim, Weapon, and Shield
代码链接: https://github.com/Intelligent-Perception-Lab/Awesome-WS-Security
文章目录
1 引言
无线感知技术作为一种新兴的感知范式,近年来在学术界和工业界都受到了广泛关注。这种技术利用无线信号与环境和物体的交互来获取信息,包括但不限于WiFi、声波、毫米波雷达、蓝牙和LoRa等。与传统的光学或接触式传感器相比,无线感知技术具有独特的优势:
-
非接触和非侵入性:无线感知实现了非接触、非侵入式感知,比CMOS传感器对隐私信息的威胁要小得多,这在医疗监测和隐私敏感场景中尤为重要。
-
卓越和无害的穿透能力:无线信号较长的波长提供了穿透能力,允许在非视线(NLOS)条件下操作,从而在复杂环境(如室内空间)中实现更灵活的全天候、全时应用。
-
与无处不在的通信设备集成:通信和感知的集成允许许多无线感知系统利用现有的通信基础设施(如WiFi路由器),实现持续感知的同时降低部署成本。
然而,随着无线感知技术变得越来越普遍,安全问题日益突出。具体来说:
-
攻击者可以利用无线系统的漏洞通过干扰或欺骗无线信号来破坏感知系统的准确性。例如,在自动驾驶场景中,攻击者可能欺骗雷达回波信号,导致车辆误判周围环境,可能导致严重的安全事故。
-
无线信号本身可能泄露隐私:例如,通过分析来自毫米波雷达的反射信号,攻击者可能推断出房间内居住者的活动模式、生理状态,甚至对话内容。
-
一些攻击者可能将无线感知系统用作攻击其他系统的工具。例如,利用毫米波雷达的穿透能力,攻击者可能窃听墙后的对话或监视他人的行为。
这些安全问题涉及范围广泛,涵盖个人隐私、财产安全、公共安全等。未解决的安全问题严重阻碍了该技术在医疗保健、金融和公共安全等敏感领域的应用,同时也削弱了公众信任。因此,解决这些安全挑战对于学术上推进该领域和实现无线感知技术的广泛实际应用都至关重要。
然而,尽管无线感知安全的重要性日益增加,学术界仍然缺乏对相关研究的系统综述和分类。这一空白阻碍了研究人员在安全研究中建立联系并全面了解该领域。缺乏全面的审查造成了多重挑战:新人难以把握研究趋势,有经验的研究人员难以定位自己的工作,从业者在系统实施过程中可能忽视关键的安全风险。因此,对无线感知安全进行系统的综述势在必行。
2 动机
进行无线感知安全的全面综述并非易事。综述的关键在于找到一个合理的分类方法,该方法应满足三个关键要求:
-
直观、逻辑和本质的分类。分类应该易于理解,同时揭示基本见解。基于设备的分类(如WiFi、麦克风、毫米波雷达)虽然直观,但未能捕捉跨设备安全模式和技术含义。有效的框架应该关注核心安全原则,而不是表面的技术细节。
-
全面覆盖。分类应涵盖该领域的广度和适应性。无线感知安全跨越多个领域,包括网络物理安全、超材料、后门攻击、对抗样本、身份验证和自动驾驶。简单的基于威胁的分类(如欺骗、干扰)往往会错过跨域攻击和安全应用。此外,该框架应能适应现有研究和未来发展。
-
类别之间界限清晰。每项研究工作应明确地适合单一类别,以建立清晰的认知框架。然而,无线感知安全的多方面性质使分类复杂化。基于方法的分类(如信号处理vs深度学习)往往导致重叠,因为许多方法结合了多种技术。该框架应尽量减少这种模糊性,以提供清晰的研究定位。
为了找到这样一种分类方法,作者总结了200多篇相关文章。他们发现,几乎所有与无线感知安全相关的研究都可以根据无线信号在安全场景中扮演的角色分为三类:
-
无线系统作为攻击目标。对于这一类别的研究,由无线信号组成的无线系统是"无辜的受害者"。第1类的重点是如何攻击这些无线系统,使其无法运行。例如,对汽车毫米波调频连续波(FMCW)雷达的攻击、对人类活动识别(HAR)系统的攻击以及对基于WiFi的检测系统的攻击都属于这一类别。根据不同的攻击目标,我们进一步将这一类别细分为三种类型:对信号源的攻击、对信道的攻击和对目标的攻击。此外,关于如何保护这些无线系统以防御攻击的研究也属于这一类别。
-
无线信号作为攻击工具。对于这一类别的研究,无线信号是攻击者的"邪恶帮凶"。研究重点是如何使用无线信号攻击其他正常运行的物理系统,从而窃取物理系统的私人信息甚至使其无法运行。例如,使用毫米波雷达窃听移动电话麦克风或CPU信息、基于WiFi窃听POS终端键盘输入以及通过电磁泄漏推断GPU相关信息都属于这一类别。根据攻击设备是否主动发射无线信号,我们进一步将这一类别细分为两种类型:主动攻击和被动攻击。此外,相应的对策也属于这一类别。
-
无线信号作为安全应用的守护者。对于这一类别的研究,无线信号充当"正义守护者"致力于完成安全任务。研究重点是如何使用无线信号作为"盾牌"来实现安全应用。这一类别可以进一步分为三种主要类型:(1)生物特征认证:这包括基于步态的识别、语音识别、面部识别和生理信号认证。(2)设备真实性验证:这包括设备指纹识别和媒体真实性验证。(3)隐私保护:这包括隐私威胁检测和隐私数据保护。
这种基于角色的分类有效地解决了上述挑战。它提供了一个与认知模式一致的直观框架,使人能够快速理解该领域。分类捕捉了无线信号与安全之间的基本关系:无线信号作为潜在目标、攻击载体或安全工具。这一本质视角将不同的研究领域统一到一个连贯的框架中。此外,它能够根据核心贡献进行明确分类,而不考虑所采用的技术方法。
3 类别1: 无线感知系统作为攻击目标
无线感知系统作为攻击目标代表了一个基本的安全关注点,因为这些系统在医疗保健、智能家居和自动驾驶应用中的部署日益增加。无线感知系统包含三个关键组件:感知目标、源和信道,每个组件都容易受到不同的攻击向量。
3.1 对感知目标的攻击
对感知目标的攻击涉及通过三种主要方法操纵或改变被感知目标的特征:
- 静态攻击:信号无法随时间调制。
- 动态攻击:信号可以随时间调制。
- 对抗样本攻击:采用精心制作的对抗样本来攻击模型。
这些方法适用于各种无线感知系统,如雷达成像、手势识别、跌倒检测和生命体征监测。
3.1.1 静态攻击
静态攻击采用战略性放置的材料标签来干扰感知系统,而不进行时间调制。关键场景包括:
- 单模态:MetaWave引入了超材料标签,包括吸收标签、反射标签和偏振标签,通过改变其回波属性来干扰毫米波雷达。
- 多模态:通过组合现有的毫米波雷达、LiDAR和摄像头攻击方法,实现对多传感器融合系统的被动反射联合攻击。
3.1.2 动态攻击
动态攻击利用振动或旋转机制来随时间调制信号,从而对感知系统产生更具破坏性的干扰。这些攻击可以分为基于振动和旋转的干扰:
- 振动调制:使用振动设备针对SAR成像进行动态攻击系统。
- 旋转调制:刚体上的旋转组件(如船舶天线、飞机螺旋桨)会因多普勒效应导致接收信号的相位调制。
3.1.3 对抗样本攻击
对抗样本攻击利用深度学习模型的脆弱性,注入特定扰动来破坏感知模型。两个关键任务受到影响:
- 人类活动识别(HAR):通过生成预先计算的扰动来欺骗HAR系统,实现超过95%的成功率。
- WiFi定位:研究表明,基于神经网络的WiFi室内定位系统容易受到对抗样本的影响。
3.2 对感知源的攻击
对感知源的攻击旨在通过干扰信号源来破坏无线感知系统。这些攻击可以分为三类:
- 干扰攻击:发射干扰信号,降低目标设备的信噪比。
- 欺骗攻击:生成虚假信号,欺骗目标系统将其解释为合法信号。
- 对抗攻击:向接收信号注入微小扰动,欺骗深度学习模型进行错误分类或识别。
3.2.1 干扰攻击
干扰攻击涉及在受害者的频带内发射高功率干扰信号,导致系统的ADC组件饱和,从而使其无法运行。根据感知技术,干扰攻击可以分为:
- 基于毫米波的干扰:设计单频信号和扫频信号,利用基于SNR阈值的检测机制的漏洞。
- 基于声学的干扰:使用超声换能器连续发射与传感器工作频率匹配的超声波。
- 转导攻击:利用声学信号对惯性传感器进行跨模态转导攻击。
3.2.2 欺骗攻击
欺骗攻击通过生成虚假信号来误导无线感知系统。策略包括调制反射信号或主动生成欺骗信号来欺骗系统。欺骗可以针对各种维度:距离、速度、角度和时间/频率。
3.2.3 对抗攻击
对抗攻击利用受害者感知系统内的算法漏洞,通过向接收信号注入微小扰动来误导决策模型。这些攻击主要针对三种关键技术:基于毫米波的感知、基于WiFi的感知和声学感知。
3.3 对感知信道的攻击
信道攻击操纵信号的传播特性,改变信道响应。攻击者可以使用可重构智能表面(RIS)来调整信号的反射和折射特性,从而影响接收器的感知结果。这些攻击可以分为两类:
- 对通信信道的攻击:改变通信信道的传播特性,篡改传输信息或操纵流量。
- 对感知信道的攻击:修改感知信道的传播特性,干扰目标检测或成像等任务。
3.4 防御策略
针对这些攻击,研究人员提出了各种防御策略,大致可分为主动防御和被动防御:
- 主动防御:通过实时监控和干预来预防攻击。
- 被动防御:采用固有的安全特性来抵抗攻击,确保系统即使在攻击下也能可靠运行。
4 类别2: 无线信号作为攻击工具
无线信号除了其通信和感知功能外,还已成为强大的攻击工具。与传统的网络攻击相比,基于无线信号的攻击直接影响物理层。
4.1 基于无线信号的主动攻击
主动攻击主动发射无线信号来攻击目标系统,主要通过三种机制:
- 振动检测机制:无线信号检测和捕获微小的表面振动,从而提取耳机音频和环境物体的信息进行窃听攻击。
- 电磁干扰(EMI)机制:通过精心设计的电磁干扰来干扰和控制电子设备,实现对触摸屏、鼠标和传感器的未授权操作。
- 信道操纵机制:利用协议漏洞来破坏设备通信并损害系统操作。
4.1.1 基于振动的窃听
这类攻击利用无线信号捕捉由声波和机械运动引起的微米甚至纳米级表面振动。主要应用包括:
- 声音窃听:从高振幅源(如扬声器、喉部振动)到更微妙的源(如耳机接收器和手机)的声音重建。
- 基于振动的侧信道攻击:通过控制机械组件生成特定振动模式,建立隐蔽信道从物理隔离系统中窃取数据。
4.1.2 基于EMI的设备控制
EMI攻击通过目标电磁发射来破坏设备安全。这些攻击可以在三个层面上影响设备操作:
- 信号级干扰:影响信号处理,如在电容屏上诱导虚假触摸输入。
- 电路级干扰:导致组件故障,如键盘扫描电路攻击。
- 系统级干扰:破坏关键组件,如无人机中的IMU传感器,导致控制失效。
4.1.3 基于信道操纵的通信中断
信道操纵攻击代表了一类复杂的无线安全威胁,它利用物理传播特性和协议级漏洞。这些攻击在两个不同层面上运作:
- 物理层:通过目标信号注入修改信道特性。
- 协议层:利用特定通信协议机制来实现干扰目标。
4.2 基于无线信号的被动攻击
与需要信号注入的主动攻击不同,被动攻击通过捕获和分析自然存在的信号来秘密提取信息。主要包括两类:
- 基于设备泄漏的信息窃取:利用设备运行过程中产生的各种物理信号发射。
- 基于网络流量的信息推断:分析设备生成的网络流量模式来推断用户行为和环境信息。
4.2.1 基于设备泄漏的信息窃取
这类攻击利用设备运行过程中不可避免产生的各种物理信号,包括电磁辐射、声学信号和热输出。主要研究方向包括:
- 处理器信息窃听:针对CPU和GPU的电磁泄漏进行分析,实现计算活动窃听。
- 传感器信息窃听:利用指纹传感器和麦克风的电磁侧信道进行信息重建。
- 移动设备电磁泄漏:分析智能手机和电动汽车的电磁辐射,推断设备使用模式和敏感信息。
4.2.2 基于协议定义信号的信息推断
这类攻击通过分析设备生成的网络流量和无线信号特征来执行多级隐私泄露。主要包括:
- IoT设备行为分析:通过分析智能设备在不同操作状态和任务下产生的独特网络流量模式来推断设备状态和用户行为。
- WiFi信号分析:利用环境因素和人类存在对WiFi信号传播的影响,通过分析接收信号强度指示器(RSSI)、信道状态信息(CSI)和波束成形反馈信息(BFI)的变化来推断人员活动和位置信息。
4.3 针对无线信号攻击的防御策略
防御方法主要在两个不同层面上运作:
- 物理层防御:聚焦于基本信号传播特性,通过信号路径控制、功率分配和波束成形等技术增强安全性。
- 应用层防御:聚焦于特定场景的对策和隐私保护机制。
5 类别3: 无线信号作为安全应用的守护者
无线信号为安全应用提供了独特的优势。这些应用可以分为三个互补的领域:生物特征认证、设备真实性验证和隐私保护。
5.1 人类识别和认证
人类识别和认证(I&A)在安全中扮演重要角色。基于无线感知的认证相比传统方法展示了三个关键优势:
- 环境适应性:无线信号在不同环境条件下保持一致性能。
- 用户友好性:非接触式无线认证实现无需用户干预的持续识别。
- 安全性:无线认证利用独特的个体生物特征调制模式,抵抗伪造。
主要的I&A方法包括:
5.1.1 基于步态的I&A
利用无线信号与人体步态交互的独特模式进行识别。主要基于三种物理机制:
- 电磁波相互作用
- 多模态信号融合
- 跨模态映射
5.1.2 基于声纹的I&A
通过分析声波在人体组织中的传播来识别个体。依赖三个关键的物理过程:
- 通过头骨和骨骼结构的骨传导
- 来自声带、口腔和面部组织的组织振动模式
- 耳道内独特的声波反射
5.1.3 基于面部的I&A
利用毫米波雷达和声学信号重建面部特征,并结合多模态融合技术。基于三种基本机制:
- 电磁波成像
- 声学反射
- 生理特征检测
5.1.4 基于生命体征的I&A
利用个体独特的生理特征(如心跳和呼吸模式)建立身份。基本原理是毫米波信号能够检测到身体表面的微小振动,这些振动是内部生理过程的直接表现。
5.2 设备真实性验证
设备真实性验证包括两个主要方向:基于RF组件特性的设备指纹识别,和通过无线通信模式进行的媒体真实性验证。
5.2.1 设备指纹识别
设备指纹识别主要依赖于三个层面的独特物理特征:
- 硬件层:制造偏差在RF前端组件中创建独特的CPU电磁辐射模式。
- 协议层:在无线通信协议实现中表现为独特的行为模式。
- 环境层:特定设备-环境电磁交互的特征。
5.2.2 媒体真实性验证
媒体真实性验证利用两种基本的物理机制:
- 信号传播特性:在真实世界场景中表现出独特的时空模式。
- 设备响应特性:媒体设备如相机、麦克风和扬声器表现出独特的信号响应特征。
5.3 隐私保护
无线信号通过其非接触监测和环境感知能力为隐私保护提供了独特的优势。主要包括两种保护机制:
5.3.1 隐私威胁检测
利用无线信号分析来识别潜在的隐私威胁,如隐藏的摄像头和窃听设备。可以通过主动或被动方法实施,使用专门的检测设备和信号处理算法。
5.3.2 隐私数据保护
利用无线信号特性提供理论安全保证,同时减少计算开销。依赖三种基本的物理机制:
- 信道互易性和随机性
- 空间选择性
- 人工噪声注入
这些安全应用充分利用了无线信号的独特物理特性,为传统安全方法提供了强有力的补充,开创了安全领域的新范式。
6 Awesome-WS-Security
本文作为一篇综述性文章,没有具体的实验部分。但是,作者通过构建Awesome-WS-Security数据库对该领域的研究进行了全面的统计分析,这可以视为本文的"实验"部分。以下是对这一分析的详细介绍:
6.1 Awesome-WS-Security数据库
为了系统地理解无线感知安全领域,作者手动构建了第一个专注于无线感知安全的文献集:Awesome-WS-Security。该数据库包含超过250篇论文,涵盖了2020-2024年间最重要的研究工作。数据库记录了每个条目的五个关键属性:标题、年份、来源、类别和相关性,具有以下显著特征:
-
类别标签:将论文分为三类:无线系统作为攻击目标(1)、无线信号作为攻击工具(2)和无线信号作为守护者(3)。
-
相关性标签:每篇论文获得相关性评分(1-4):
- 分数1表示具有潜在启发性的感知/通信安全论文
- 分数2代表具有明确相关性的无线安全论文
- 分数≥3表示直接的无线感知安全研究
-
开源:数据库和分析代码在GitHub上公开可用,使研究人员能够跨多个维度进行自定义分析。
6.2 可视化和分析
对数据库的分析揭示了几个关键见解:
-
分布:热图显示相关性评分1-2的论文占主导地位,表明该领域处于早期发展阶段,具有显著的增长潜力。
-
焦点:词云分析突出了"攻击"、“认证”、"识别"和"对抗"等术语的频繁出现,反映了核心研究主题。
-
时间趋势:
- 使用无线信号作为攻击工具的论文显示出显著增长(相关性≥1)
- 而在相关性≥2的论文中,对无线系统的攻击研究占主导地位
-
发表场所:
- 在相关性≥1的论文中,TMC、TIFS和Infocom领先
- 在相关性≥2的论文中,TMC、IMWUT和Infocom占主导地位,突出了移动和普适计算社区的强烈兴趣
这些分析结果为研究人员提供了该领域的整体概况,包括研究热点、发展趋势以及主要的发表场所等信息。这不仅有助于新研究人员快速了解该领域的现状,也为经验丰富的研究者提供了宝贵的参考,帮助他们在众多移动计算和安全文章中快速定位与无线感知安全相关的工作。
7 不足和未来展望
尽管无线感知安全研究取得了显著进展,但仍面临一些根本性挑战:
7.1 无线信号物理-数字交互的复杂性
物理-数字交互是无线感知安全面临的一个根本挑战。与传统的数字安全不同,无线感知系统必须在多个层面应对物理世界的不确定性:
- 物理层的信号特性随机性
- 由于环境动态导致的无线信道不稳定性
- 感知层信息提取的不确定性
这种不确定性在三个背景下影响无线感知安全:
- 作为攻击目标时,信号变得容易受到攻击,因为攻击者可以利用环境变化来掩盖恶意活动
- 作为攻击工具时,环境因素可能会影响攻击的精度和可靠性
- 作为安全机制时,这种不确定性直接影响可靠性,需要复杂的信号处理解决方案
解决这些挑战需要在无线信号处理和深度学习技术方面取得进展,包括:
- 合成孔径
- 运动补偿
- 自动聚焦
- 超分辨率
- 稀疏孔径
- 多基协作
- 监督学习
- 自监督学习
- 模态对齐
- 无线信号大模型开发
7.2 安全保护机制的滞后性
安全保护机制的滞后性代表了无线感知安全面临的一个关键挑战。与传统的网络安全不同,无线感知安全必须同时应对来自物理和数字领域的威胁,这使得保护机制的设计和部署变得非常复杂。
保护滞后性在三种场景中表现出来:
- 信号作为攻击目标:传统防御对新兴威胁的响应显示出显著延迟,即使是动态解决方案也受到预定义参数的限制
- 信号作为攻击载体:当前的保护机制难以应对新颖的攻击方法
- 信号作为安全机制:系统效能因保护滞后而受损
这种限制根本上源于当前框架中"问题识别、原因分析、对策设计和防御部署"的线性序列。随着攻击方法的进步,特别是随着新兴基础模型的出现,未来的研究应该通过主动、智能和协作机制来超越传统被动防御的限制。
7.3 应用场景的多样性和快速发展
应用场景的多样性和快速演变给无线感知安全带来了重大挑战。
场景多样性驱动了不同的需求:
- 信号作为攻击目标:安全需求在不同背景下有显著差异 - 自动驾驶需要在高移动性环境中的毫秒级响应,而智能家居应用优先考虑长期稳定性和能源效率
- 信号作为攻击工具:攻击效果在不同环境中有显著差异,这种依赖于场景的复杂性可以被防御性地利用
- 信号作为安全守护者:系统必须平衡多个相互竞争的目标
此外,新兴技术如5G/6G和IoT创造了新颖的应用环境。例如,元宇宙引入了前所未有的混合现实安全需求,而量子计算的发展可能从根本上改变加密范式。
未来无线感知安全研究应该超越传统应用边界。诸如认知安全和生物特征认证等新兴领域为变革性进步提供了机会。安全解决方案设计应该解决当前需求,同时保持对未来场景演变的可扩展性。
7.4 未来展望
为应对这些挑战,作者提出了几个关键的未来研究方向:
-
无线信号处理和感知算法的突破
- 跨域攻击模型:开发跨越多个物理域的统一理论框架,预测和理解跨域攻击模式
- 基础模型赋能的智能攻击:利用基础模型能力,开发更强大的信号处理算法
-
构建更强大的无线感知系统防御系统
- 多层协作防御:建立从物理层到应用层的综合防御链
- 智能防御策略:开发具有高级学习和推理能力的防御系统
- 预防性主动防御机制:实现主动威胁识别和预防能力
-
探索新的安全应用
- 认知安全:利用无线感知技术的独特优势,如非接触式获取多维生理特征、连续监测的可行性和部署便利性,来解决认知安全面临的挑战
这些未来方向反映了无线感知安全领域向更智能、系统和主动的方向发展的趋势。通过跨域融合、智能化和主动防御,无线感知安全有望在未来实现质的飞跃,为构建更安全、更智能的社会做出重要贡献。
8 总结
本文是无线感知安全领域的首篇系统性综述,引入了一种创新的基于角色的分类框架,将研究根据无线信号的功能分类为受害者、武器和盾牌。这一框架不仅提供了对该领域的直观和逻辑组织,还揭示了不同安全应用之间的基本模式。通过对2020-2024年间200多篇出版物的全面分析,作者进一步识别了关键技术挑战和新兴趋势。
本综述的主要贡献包括:
-
提供了无线感知安全领域的首个系统性综述,填补了该领域缺乏全面回顾的空白。
-
提出了基于无线信号角色的创新分类框架,将无线感知安全研究分为3个主要类别、10个二级分类和24个三级分类。这一框架不仅直观易懂,还反映了无线信号与安全问题之间的本质联系。
-
系统分析了无线感知安全研究的发展模式和趋势,识别了不同研究方向的演变模式,热点话题和未发展的领域,为促进该领域的发展提供了新的视角和想法。
-
构建了Awesome-WS-Security数据库,为研究人员提供了一个全面的资源,以快速了解该领域的现状和发展趋势。
-
深入讨论了无线感知安全面临的挑战和未来趋势,为研究人员指明了潜在的研究方向。
这篇综述为理解无线感知安全奠定了基础,为新手和经验丰富的研究人员alike提供了对该领域的清晰视角。它不仅总结了当前的研究状态,还指出了未来的发展方向,为推动无线感知安全领域的进步做出了重要贡献。
未来的研究方向主要集中在三个方面:
-
无线信号处理和感知算法的突破,特别是在跨域攻击模型和基础模型赋能的智能攻击方面。
-
构建更强大的无线感知系统防御系统,包括多层协作防御、智能防御策略和预防性主动防御机制。
-
探索新的安全应用,如认知安全,充分利用无线感知技术的独特优势。
这些方向反映了无线感知安全向更智能、系统和主动的方向发展的趋势,有望在未来实现质的飞跃,为构建更安全、更智能的社会做出重要贡献。