1、介绍
Weakly Supervised Object Detection Using Complementary Learning and Instance Clustering论文介绍:监督对象检测方案使用完全注释的训练数据,这是相当昂贵的。而弱监督对象检测(WSOD)仅使用图像级别的注释进行训练,这种注释更容易获取。 WSOD是一项具有挑战性的任务,因为它旨在学习使用图像级标签进行对象定位和检测。根据这一主张,在本文中,我们提出了基于判别特征学习的WSOD端到端框架。我们使用客观技术从图像中获取初始建议。然后,并行训练两个互补网络以获得判别式图像特征,这些特征图像将与第三网络的特征在通道上进行级联。我们将此专为区分特征学习而设计的分类网络称为融合互补网络。该网络学习通过补充特征将整个对象实例包围起来的建议,这些特征最终将学会预测整个对象比仅包含对象部分的建议具有更高的概率。然后,对区域提议进行分层聚类。我们的聚类方法称为实例聚类,首先执行类间聚类,然后使用“交集-联合”度量执行迭代类内聚类,以获得与每个对象实例相对应的空间相邻聚类成员。在每个类内群集迭代中,将高分建议设置为每个类内群集的质心。在PASCAL VOC2007和PASCAL VOC2012数据集上进行了实验,定性和定量结果均显示在这些基准上WSOD性能得到了改善。
2、主要技术
spp(金字塔池化)的原理:
spp的做法是使用多个不同大小的sliding window pooling对卷积输出的feature map进行池化,然后将这多个结果进行concat合并得到固定长度的输出。
XC:计算每个区域分类概率
XD:建议待检测区域,利用交叉熵损失
通过分别从分类和检测分支中获取两个得分矩阵xC和xD的Hadamard乘积(元素乘积)来计算最终得分矩阵(xF)
通过以特定于类的方式对区域进行最大池化来从分类分支计算图像级分类分数。 然后将聚类应用于提案列表,以获取最终的边界框。
其中,L是所建议的WSOD网络的损耗函数,LA,LB和LC分别是网络A,B和C的损耗函数。 S是概率分布中离散状态的数量(s是单个状态)
3、检测结果:
定性结果(颜色相同的建议表示实例簇):通过IC推断出的中间和最终区域具有不同的异常阈值。 在最终检测中,绿色边界框表示真实检测,红色边界框表示错误检测。 这些检测结果针对单个对象类别进行了演示。