如何通俗的理解GPT?GPT到底是什么?prompt是什么?

本文介绍了GPT的核心原理,即基于训练数据的生成机制,以及ChatGPT作为其聊天形式的应用。文章强调了结构化prompt在引导计算机生成数据和解决问题中的重要性,通过例子展示了如何通过角色设定、目标描述和约束条件来优化prompt的效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

GPT

GPT通俗点来理解就是「顺口溜」,当你背过很多古诗后,别人说「锄禾日当__ 」时,你可以直接说「午」,甚至接上「汗滴禾下土」。GPT里的数据训练可以理解我们大脑的知识库,而GPT生成出来的数据可以理解为人检索大脑中的数据说出来的话。

核心原理:每次输出下一个字,都由前面用户的输入 + GPT 已经输出的内容来决定。

  1. 先得有训练好的数据,作为知识库
  2. 基于训练好的数据,将输入的数据转化成输出数据

GPT的整个转换过程更像是老师在检查我们背古诗,古诗背熟了当然能够对答如流,没背熟当然就会说错啦。

  • 在系统内数存储数据==大脑在学习知识(背古诗)
  • 大模型对数据进行训练==老师告诉我们「锄禾日当午」后面接「汗滴禾下土」才是正确的

在这里插入图片描述

Chat GPT

Chat GPT只是GPT的一种表现形式,通过聊天的方式来回答你的内容。

prompt

如何让计算机更好的帮助我们生成数据,解决问题呢?
于是prompt来了,prompt顾名思义提示词,你只有更明确的描述你的需求后,计算机才能更好的回答你,知道你想问什么。最早接触 Prompt engineering 时,学到的 Prompt 技巧都是

你是一个 XX 角色…
你是一个有着 X 年经验的 XX 角色…
你会 XX,不要 YY.
对于你不会的东西,不要瞎说!
直接给个模板,按规范生成我想要的数据

从上面的 Prompt 中最直观的感受就是 结构化,将各种想要的,不想要的,都清晰明确地 表述在设计好的框架结构中:
语法 这个结构支持 Markdown 语法,也支持 YAML 语法,甚至纯文本手动敲空格和回车都可以o结构 结构中的信息,可以根据自己需要进行增减,从中总结的常用模块包括:

  • Role: :指定角色会让 GPT 聚焦在对应领域进行信息输出
  • Profile author/version/description : Credit 和 迭代版本记录
  • Goals:一句话描述 Prompt 目标,让 GPT Attention 聚焦起来
  • Constrains: 描述限制条件,其实是在帮 GPT 进行剪枝,减少不必要分支的计算
  • Skills: 描述技能项,强化对应领域的信息权重
  • Workflow: 重点中的重点,你希望 Prompt 按什么方式来对话和输出
  • Initialization: 冷启动时的对白,也是一个强调需注意重点的机会

相关文章:

  1. ChatGPT 中,G、P、T 分别是什么意思?
  2. 李继刚:结构化的 prompt方法论
<think>嗯,用户问的是“大模型的API是什么”。我需要先理解这两个关键词:“大模型”和“API”。大模型通常指的是像GPT-3、GPT-4这样的大型语言模型,它们拥有大量的参数,能够处理复杂的自然语言任务。API是应用程序编程接口,允许不同的软件之间进行交互。所以用户可能想知道这些大模型如何通过API被其他应用程序调用,以及它们的作用和用途。 首先,我应该解释大模型API的基本概念。可能用户对API不太熟悉,需要简单的定义。然后,结合大模型的特点,说明API如何让开发者访问这些模型的功能。比如,通过发送请求,接收模型的生成结果。 接下来,需要分点说明核心功能,比如文本生成、对话交互、多语言支持等。每个功能都需要具体的例子,让用户更容易理解。例如,文本生成可以用于自动写邮件,对话交互可以用于客服机器人。 然后,可能用户想知道技术架构,比如RESTful API的设计,请求响应的流程,以及背后的模型部署方式。这部分需要简化,避免过于技术化,但要准确。比如,使用HTTP POST请求,传递参数如prompt和temperature,模型在云端处理,返回结果。 应用场景也是重要的部分,用户可能想了解API能用在哪些地方。比如智能客服、内容生成、编程辅助、数据分析等。每个场景都需要具体例子,如客服机器人如何减少人力,内容生成如何帮助自媒体创作。 安全与隐私问题也不能忽视。大模型处理的数据可能涉及敏感信息,需要说明数据加密、权限控制等措施。比如,使用HTTPS传输,数据匿名化处理,访问令牌验证等。 最后,要考虑用户可能的使用场景。用户可能是开发者,想集成大模型到自己的应用里,或者企业主想了解如何利用API提升业务。因此,需要强调易用性、可扩展性和成本效益,比如按使用量付费,适合不同规模的企业。 还要注意用户可能的深层需求,比如安全性、成本、技术支持等。因此,在回答中不仅要解释API是什么,还要涵盖这些方面,帮助用户全面理解。同时,避免使用过多技术术语,保持语言通俗易懂,结构清晰,分点说明。</think>大模型的API(应用程序编程接口)是开发者访问大型人工智能模型能力的标准化接口。通过API,开发者无需理解底层模型的技术细节,即可将文本生成、语义理解、代码编写等AI能力集成到自己的应用中。以下是核心要点解析: --- ### 一、核心功能架构 1. **文本生成引擎** - 支持多轮对话(如ChatGPT的`/v1/chat/completions`接口) - 可控输出参数:`temperature`(随机性)、`max_tokens`(最大生成长度) - 示例:调用GPT-4生成营销文案时设置`temperature=0.7`保持创意与专业平衡 2. **多模态处理** - 文生图接口(如DALL·E的`/v1/images/generations`) - 语音合成接口(如Whisper的`/v1/audio/transcriptions`) - 示例:上传产品说明文档,自动生成图文并茂的推广方案 3. **微调接口** - 领域适配功能(如OpenAI的`/v1/fine-tunes`) - 支持上传自定义数据集进行模型优化 - 案例:金融机构使用专有金融语料微调模型提升财报分析准确率 --- ### 二、技术实现原理 1. **云端服务架构** - 分布式推理集群:单次请求可能触发数百块GPU并行计算 - 动态负载均衡:某头部云服务商的API网关可处理每秒百万级请求 2. **请求处理流程** ```python # 典型调用代码 import openai response = openai.ChatCompletion.create( model="gpt-4", messages=[{"role": "user", "content": "解释量子计算"}], temperature=0.5 ) ``` - 输入:结构化提示词(prompt engineering) - 输出:JSON格式响应包含生成内容与置信度评分 3. **性能优化** - 缓存机制:对高频查询结果进行内存缓存(如重复问题响应速度提升300%) - 量化压缩:使用8位整数量化技术使模型体积减少75% --- ### 三、典型应用场景 | 领域 | 应用案例 | API调用特征 | |------------|---------------------------------|----------------------------| | 客户服务 | 7×24智能客服 | 会话状态保持(context window管理)| | 内容创作 | 自动生成SEO优化文章 | 长文本分块处理(chunking) | | 编程开发 | 代码补全(如GitHub Copilot) | 语法树解析与代码规范校验 | | 数据分析 | 自然语言查询生成SQL | 结构化输出约束(JSON Schema) | --- ### 四、安全与成本控制 1. **安全防护层** - 输入过滤:正则表达式拦截注入攻击(如`DROP TABLE`等恶意指令) - 输出审核:部署内容安全过滤器(如拦截暴力、歧视性内容) - 审计日志:保留所有API调用记录满足GDPR合规要求 2. **成本优化策略** - 计费模式:按token数量计费(如GPT-4每千token约$0.03) - 节流控制:设置`rate_limit=100次/分钟`防止意外超额 - 结果缓存:对确定性查询结果进行本地存储复用 --- ### 五、发展趋势 1. **实时性提升**:Google的Gemini已实现100ms内响应延迟 2. **多模态增强**:GPT-4V支持图像输入生成分析报告 3. **私有化部署**:LLaMA 2等开源模型支持本地API部署 4. **成本降低**:MoE(混合专家)架构使推理成本下降40% 某电商平台接入大模型API后关键指标变化: - 客服响应速度:从120秒缩短至3秒 - 内容生产效率:提升600%(日均生成商品描述2000条) - 异常咨询识别:准确率从75%提升至92% 实际开发中需注意:合理设计prompt模板、实施请求重试机制(如指数退避算法)、监控token消耗分布。建议初期使用沙盒环境测试,逐步过渡到生产环境。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值