mmdetection从入门到精通(三)-框架整体结构和源码解读

本文深入探讨了mmdetection框架,详细解析了目标检测算法的组件,包括backbone、neck、head、plugins、core及loss。文章介绍了训练流程中的8个核心组件,如特征提取、特征融合、正负样本处理、损失计算等,并讨论了训练技巧和测试策略。此外,还阐述了数据流的整体过程,从Dataset、Pipeline、Sampler到DataParallel的处理。通过对Runner类的分析,揭示了训练和验证的工作原理,以及如何通过Hooks进行扩展。
摘要由CSDN通过智能技术生成


请添加图片描述

1 mmdetection模型组件详解

1.1目标检测算法分类

在这里插入图片描述

简单来说目标检测算法可以按照 3 个维度划分:

按照 stage 个数划分,常规是 one-stage 和 two-stage,但是实际上界限不是特别清晰,例如带 refine 阶段的算法 RepPoints,实际上可以认为是1.5 stage 算法,而 Cascade R-CNN 可以认为是多阶段算法,为了简单,上面图示没有划分如此细致
按照是否需要预定义 anchor 划分,常规是 anchor-based 和 anchor-free,当然也有些算法是两者混合的
按照是否采用了 transformer 结构划分,目前基于 transformer 结构的目标检测算法发展迅速&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI扩展坞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值