(三)扭转弯曲

目录

扭转

弯曲


扭转

一、截面几何量的计算

 二、受扭圆轴的强度计算

弯曲

一、受弯杆的分类

力偶弯曲和横力弯曲

二、剪力图和弯矩图

剪力和弯矩随x变化的图

三、剪力图和弯矩图的绘制

方法一:

(1)由平衡方程确定约束反力;

(2)对梁进行合理的分段;

(3)在每段内,利用截面法和平衡方程确定截面上的剪力和弯矩;

(4)拼接每段剪力和弯矩为整段梁,并绘制他们图形。

方法二:

(1)由平衡方程确定约束反力;

(2)对梁进行合理的分段;

(3)确定剪力和弯矩在每段上的初终值;

(4)利用微分关系,确定每段内的剪力图和弯矩图;

(5)逐段绘制剪力图和弯矩图,并拼接起来。

四、集中载荷作用下的剪力图和弯矩图特征

内容来源:刘鸿文《材料力学》、孙传芳《材料力学》以及刘翔老师PPT

### 回答1: 角形薄板的弯曲问题可以采用线性角形元素(Linear Triangle Element)来进行建模分析。在有限元法中,线性角形元素的刚度矩阵可以通过对单元刚度矩阵进行组装得到。对于角形薄板,其单元刚度矩阵可以表示为: $$ K_e = \frac{Et^3}{12(1-\nu^2)}\begin{bmatrix} 2 & \nu & 0 & -3 & -\nu & 0 \\ \nu & 2 & 0 & -\nu & -3 & 0 \\ 0 & 0 & (1-\nu)/2 & 0 & 0 & -\nu/2 \\ -3 & -\nu & 0 & 2 & \nu & 0 \\ -\nu & -3 & 0 & \nu & 2 & 0 \\ 0 & 0 & -\nu/2 & 0 & 0 & (1-\nu)/2 \end{bmatrix} $$ 其中,$E$ 表示弹性模量,$\nu$ 表示泊松比,$t$ 表示薄板的厚度,$K_e$ 表示单元刚度矩阵。该刚度矩阵是一个 $6 \times 6$ 的矩阵。 对于一个由 $n$ 个角形薄板组成的整体结构,其总刚度矩阵可以通过将每个单元的刚度矩阵组装得到。具体来说,我们需要先定义节点坐标、节点编号单元编号,然后对每个单元进行循环,计算其刚度矩阵,并将其加入总刚度矩阵中。最终,我们可以得到整个结构的总刚度矩阵。 下面是一个 Matlab 代码示例: ```matlab % 定义薄板的几何参数材料参数 L = 1; % 薄板的长度 W = 1; % 薄板的宽度 t = 0.01; % 薄板的厚度 E = 2.1e11; % 弹性模量 nu = 0.3; % 泊松比 % 定义角形薄板的节点坐标节点编号 node = [0,0; L,0; L/2,W]; % 节点坐标 elem = [1,2,3]; % 节点编号 % 定义整个结构的总刚度矩阵 K = zeros(size(node,1)*2); % 初始化总刚度矩阵 % 计算每个单元的刚度矩阵,并组装得到总刚度矩阵 for i = 1:size(elem,1) idx = elem(i,:); % 获取当前单元的节点编号 x = node(idx,:); % 获取当前单元的节点坐标 Ke = t^3/(12*(1-nu^2))*E*[2,nu,0,-3,-nu,0;nu,2,0,-nu,-3,0;0,0,(1-nu)/2,0,0,-nu/2;-3,-nu,0,2,nu,0;-nu,-3,0,nu,2,0;0,0,-nu/2,0,0,(1-nu)/2]; % 计算当前单元的刚度矩阵 K([2*idx-1,2*idx],[2*idx-1,2*idx]) = K([2*idx-1,2*idx],[2*idx-1,2*idx]) + Ke; % 将当前单元的刚度矩阵组装到总刚度矩阵中 end ``` 在上述代码中,我们首先定义了角形薄板的几何参数材料参数,然后定义了节点坐标节点编号。接着,我们初始化了整个结构的总刚度矩阵,并利用 for 循环遍历每个单元,计算其刚度矩阵,并将其组装到总刚度矩阵中。最终,我们可以得到整个结构的总刚度矩阵。 ### 回答2: 角形薄板弯曲单元刚度矩阵是用于描述薄板在弯曲过程中的刚度性能的矩阵。薄板在弯曲过程中主要发生弯曲剪切两种形变,因此刚度矩阵需要考虑这两种形变对薄板的影响。 薄板弯曲单元刚度矩阵是一个6×6的矩阵,其中包含了薄板在个平移方向个转动方向上的刚度。 刚度矩阵的具体形式可以表示为: [K] = [B]T [D] [B] [h] 其中,[B]T是形状函数的转置矩阵,[D]是薄板材料的弹性刚度矩阵,[B]是形状函数矩阵,[h]是薄板厚度。 刚度矩阵的乘积运算代表了薄板在弯曲过程中的应力应变之间的关系。通过解析刚度矩阵,可以得到薄板在不同载荷情况下的应力应变分布。 在有限元分析中,刚度矩阵可以用于建立薄板单元的刚度矩阵,进而计算整个薄板结构的刚度矩阵。通过在整个结构上组装所有单元的刚度矩阵,可以得到整个结构的刚度矩阵,进而用于求解结构的位移应力等问题。 总之,角形薄板弯曲单元刚度矩阵是用于描述薄板在弯曲过程中刚度性能的矩阵,通过解析刚度矩阵可以得到薄板的应力应变分布。 ### 回答3: 角形薄板弯曲单元刚度矩阵是用于描述角形薄板在弯曲过程中的力学特性刚度的矩阵。刚度矩阵是一个对称矩阵,它的每一个元素描述了在不同方向上受到的力位移之间的关系。 薄板的弯曲过程可以通过弯曲弹性理论进行描述。在角形薄板的弯曲中,通过将薄板划分为若干个小单元,每个小单元中的力位移可以通过刚度矩阵来描述。 角形薄板弯曲单元刚度矩阵的元素包括弯曲刚度、剪切刚度扭转刚度。弯曲刚度描述了薄板在弯曲中的刚度特性,即薄板受到的弯曲弯曲位移之间的关系。剪切刚度描述了薄板在剪切中的刚度特性,即薄板受到的剪切力剪切位移之间的关系。扭转刚度描述了薄板在扭转中的刚度特性,即薄板受到的扭转扭转位移之间的关系。 通过将每个小单元的刚度矩阵叠加起来,可以得到整个角形薄板的刚度矩阵。刚度矩阵中的每个元素都可以通过数学推导或有限元法进行计算。 角形薄板弯曲单元刚度矩阵的计算是研究薄板弯曲问题的重要一步。它可以用于分析角形薄板的变形应力分布,从而为工程设计结构分析提供基础数据。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值