工程力学(16)—弯曲应力

一:梁弯曲的正应力

1:纯弯曲:只有弯矩没有剪力

请添加图片描述

2:纯弯曲时的正应力

平面假设:横截面变形后保持为平面,且仍然垂直于变形后的梁轴线,只是绕截面内某一轴线偏转了一个角度。

做一个小小的比较:

拉伸和压缩:平面假设—变形前原为平面的横截面,变形后仍保持为平面且仍垂直于轴线。

圆轴扭转:平面假设变形前原为平面的横截面,变形后仍保持为平面,形状和大小不变,半径仍保持为直线;且相邻两截面间的距离不变。

请添加图片描述
请添加图片描述

变形几何关系请添加图片描述

弯曲前:oo=aa=bb=dx

物理关系

请添加图片描述

静力学关系:纯弯曲,没有剪力

微元上的内力构成空间平行力系,合成的结果有Fn,My和Mz三项,但外力只有Me,所以Fn和My要为零。
请添加图片描述
对Y轴的力偶矩为0,Fn为0。
从式子Sz=0,可知:中性轴过形心
(原本只知道中性轴存在,但是不知道中性轴在那个位置,通过这样的计算我们知道中性轴是形心的。)

综上:请添加图片描述

从这个式子可得
请添加图片描述

二:梁弯曲的强度计算

请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述

请添加图片描述

例题:

请添加图片描述
先画剪矩图,弯矩图
求得是C截面处的正应力,根据公式所需条件,先算出C截面处的M,所以在这之前得算出两个约束力的大小,再算出对Z轴的惯性矩,算出k到Z轴的距离,代入公式求解最大正应力。

C截面的力偶矩找到距离最大的位置,代入公式即可。
请添加图片描述

全梁上:找出力偶矩最大的位置
请添加图片描述
请添加图片描述

例题:

请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
C截面校核一下拉的强度极限就OK,因为对应的ρ增大了。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值