(四)流体动力学(动量守恒和能量守恒)

本文详细介绍了理想流体的动量守恒与能量守恒,重点讨论了理想流体的伯努利方程,包括沿流线与总流的伯努利方程,并解释了其物理意义和适用条件。此外,还探讨了实际流体的伯努利方程、动能修正系数以及存在机械能转换时的伯努利方程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

(一)理性流体运动微分方程(动量守恒)

(二)理想流体沿流线伯努利方程(能量守恒)

(三)理想流体沿流线伯努利方程的意义

(四)理想流体总流伯努利方程

(五)实际流体总流的伯努利方程

(六)伯努利方程的推广

(七)存在机械能输出和输入时总的伯努利方程


(一)理性流体运动微分方程(动量守恒)

理想流体微分方程也叫做欧拉运动微分方程。是牛顿第二定律在理想流体中的应用。

表达式为:

物理意义:理想流体微分方程表达了作用在单位质量流体上的力与流体运动加速度之间的关系,是流体动力学的基本方程,对于不可压缩和可压缩的流体均适用,也适用于所有的理想流体的运动。

(二)理想流体沿流线伯努利方程(能量守恒)

理想流体沿流线的伯努利方程如下所示:

z_{1}+\frac{p_{1}}{\rho g}+\frac{v_{1}^{2}}{2g}=z_{2}+\frac{p_{2}}{\rho g}+\frac{v_{2}^{2}}{2g}

适用范围

  • 理想不可压缩流体
  • 质量力只有重力
  • 稳定流动
  • 对于有旋流动,仅适用于同一条流线;对于无旋流动,整个流场都适用。

(三)理想流体沿流线伯努利方程的意义

z_{1}+\frac{p_{1}}{\rho g}+\frac{v_{1}^{2}}{2g}=z_{2}+\frac{p_{2}}{\rho g}+\frac{v_{2}^{2}}{2g}

几何意义

  • z——称为位置水头;
  • \frac{p}{\rho g}——测压管高度,速度水头;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值