人体姿态估计常用评估指标(Human Pose Estimation Evaluation Metrics)

Evaluation Metrics

Percentage of Correct Parts - PCP

在这里插入图片描述
如果两个预测的关节位置和真实的肢体关节位置之间的距离最大为 肢体长度(limb length) 的一半(PCP为0.5),则认为肢体已被检测为正确的部位

用于测量四肢的检出率

缺点-处罚短肢

越高越好

Percentage of Correct Key-points - PCK

在这里插入图片描述
如果预测的关节与真实的关节之间的距离在某个阈值内(阈值变化),则检测到的关节被认为是正确的

越高越好

Percentage of Detected Joints - PDJ

在这里插入图片描述
如果预测的关节与真实的关节之间的距离在躯干直径(torso diameter)的特定范围内,则检测到的关节被认为是正确的

越高越好

Mean Per Joint Position Error - MPJPE

在这里插入图片描述
每个关节位置误差=地面真实情况与关节预测之间的欧式距离

每个关节位置误差的平均值=所有k个关节的每个关节位置误差的平均值(通常,k = 16)

越低越好

参考链接

Human Pose Estimation 101

### 3D Human Pose Estimation Research Overview #### Datasets and Benchmarks The field of 3D human pose estimation has seen significant advancements through large-scale datasets that provide comprehensive data for training and evaluating algorithms. The **Human3.6M** dataset offers extensive motion capture sequences under controlled conditions, which serve as foundational resources for developing accurate models[^1]. Additionally, the **MPI-INF-3DHP** dataset extends beyond laboratory settings by capturing more diverse scenarios using multiple RGB cameras, enhancing generalization capabilities across different environments. #### Evaluation Metrics A widely adopted metric in assessing performance is MPJPE (Mean Per Joint Position Error), measuring average distance between predicted joint positions and ground truth annotations over all joints per frame. Lower values indicate better accuracy when comparing various approaches on standardized benchmarks like those mentioned above. #### Sensor Fusion Techniques Sensor fusion plays an essential role in improving tracking reliability especially within complex scenes involving interactions among multiple individuals where occlusions occur frequently. By integrating information from depth sensors alongside traditional visual inputs, systems can achieve higher precision even during challenging situations described previously regarding multi-person activities captured in real-world contexts[^2]. #### Challenges and Future Directions Applying these technologies towards autonomous vehicles or caregiving robots requires addressing specific challenges associated with estimating poses accurately amidst crowded spaces characterized by frequent physical contacts between people. For instance, the **PoseTrack** dataset highlights common occurrences found in everyday life, serving not only as valuable test material but also highlighting areas needing improvement concerning robustness against partial visibility issues caused by overlapping bodies[^3]. ```python def calculate_mpjpe(predicted_pose, true_pose): """ Calculate Mean Per Joint Position Error. Args: predicted_pose (numpy.ndarray): Predicted 3D coordinates of body joints. true_pose (numpy.ndarray): Ground-truth 3D coordinates of body joints. Returns: float: Average error value representing overall prediction quality. """ errors = np.linalg.norm(predicted_pose - true_pose, axis=1) return np.mean(errors) # Example usage demonstrating how one might evaluate model predictions versus actual measurements predicted_joints = ... # Array containing estimated locations for each keypoint true_joints = ... # Corresponding array holding correct answers obtained via mocap system etc. error = calculate_mpjpe(predicted_joints, true_joints) print(f"MPJPE Score: {error:.4f}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值