一、前言
传统的无线电调制识别方法通常是计算无线电信号的各种特征,如高阶矩,通过构建一棵分类树,对比不同的调制类型特点,最终将信号分类。这种方法实现复杂,需要极强的专业知识。深度学习的大热将神经网络模型带入无线电通讯领域,如图1所示,不同的调制类型产生的IQ信号在时域上表现出不同的形状特征,类似于图像中的分类任务,研究者们发现使用神经网络模型也能很好地完成无线电调制类型分类,且效果要比传统方法还好。
这篇文章主要基于Tim O’Shea的两篇论文:
① Convolutional Radio Modulation Recognition Networks
② Over the Air Deep Learning Based Radio Signal Classification
论文①提出了进行无线电信号分类的卷积神经网络模型,公开了训练的模型和代码,并发布了一个用于深度学习的无线电信号仿真数据集和数据集生成脚本,这个公开数据集后来被广泛地使用于相关的使用深度学习方法进行调制识别的研究中。
论文②提出了深层的残差网络模型进行调制分类,效果较论文①有很大的提升,在②中还做了大量的超参对比试验,且使用了新的数据集。
二、用于调制识别的卷积神经网络模型(论文一)
Convolutional Radio Modulation Recognition Networks这篇论文是较早使用深度学习技术进行调制识别的研究之一,且取得了相当可观的识别效果,该论文主要有两个成果:
1、仿真数据集
论文中提出了一个高质量的无线电型信号仿真数据集,数据集基于GNU Radio环境生成,相关链接:RML2016.10a.tar.bz2和数据集生成脚本。
数据集中共包含如图1所示的11类调制信号,每种调制包含20种信噪比,每种信噪比有1000个样本,每个样本有I和Q两路信号,每路信号包含128个点,所以数据集大小为:220000×2×128。
2、卷积神经网络模型
作者提出了如图2所示的卷积神经网络模型,在论文中被称为CNN模型,包含两个卷积层和两个全连接层。此外,作者还通过增加卷积层的卷积核数量,构建了CNN2模型,CNN2模型结构与CNN模型相同,只是两个卷积层的卷积核数量分别增加为256和80,第一个全连接层神经元个数增加为256个,CNN2的源码已经公开,因此不再追究其中的细节,需要的自己看代码更加清楚,源码地址:RML2016.10a_VTCNN2_example.ipynb
值得注意的是,作者在代码中首先将2×128的数据reshape成1×2×128,对应图像中的channel×width×height,可见是将IQ数据看成单通道的2×128大小的图像数据进行处理。由于公开的数据集只有22w条数据ÿ