4.8 回溯(基础题-组合型与排列型)
回溯的升级版。选择 枚举 与 选与不选 上需要用不少心。
组合型
77. 组合
题目链接
给定两个整数 n 和 k,返回范围 [1, n] 中所有可能的 k 个数的组合。
你可以按 任何顺序 返回答案。
示例 1:
输入:n = 4, k = 2
输出:
[
[2,4],
[3,4],
[2,3],
[1,2],
[1,3],
[1,4],
]
示例 2:
输入:n = 1, k = 1
输出:[[1]]
提示:
- 1 <= n <= 20
- 1 <= k <= n
class Solution:
def combine(self, n: int, k: int) -> List[List[int]]:
"""
倒着来有两个优点:(1)快;(2)剪枝的条件好列出来。
时间复杂度:分析回溯问题的时间复杂度,有一个通用公式:
路径长度×搜索树的叶子数。对于本题,它等于O(k⋅C(n,k))。
空间复杂度:O(k)。
"""
ans = []
path = []
def dfs(i : int) -> None:
if k == len(path):
ans.append(path.copy())
return
for j in range(i,n+1):
path.append(j)
dfs(j + 1)
path.pop()
dfs(1)
return ans
216. 组合总和 III
题目链接
找出所有相加之和为 n 的 k 个数的组合,且满足下列条件:
- 只使用数字1到9
- 每个数字 最多使用一次
返回 所有可能的有效组合的列表 。该列表不能包含相同的组合两次,组合可以以任何顺序返回。
示例 1:
输入: k = 3, n = 7
输出: [[1,2,4]]
解释:
1 + 2 + 4 = 7
没有其他符合的组合了。
示例 2:
输入: k = 3, n = 9
输出: [[1,2,6], [1,3,5], [2,3,4]]
解释:
1 + 2 + 6 = 9
1 + 3 + 5 = 9
2 + 3 + 4 = 9
没有其他符合的组合了。
示例 3:
输入: k = 4, n = 1
输出: []
解释: 不存在有效的组合。
在[1,9]范围内使用4个不同的数字,我们可以得到的最小和是1+2+3+4 = 10,因为10 > 1,没有有效的组合。
提示:
- 2 <= k <= 9
- 1 <= n <= 60
class Solution:
def combinationSum3(self, k: int, n: int) -> List[List[int]]:
"""
时间复杂度:O(k⋅C(9,k))
分析回溯问题的时间复杂度,有一个通用公式:
路径长度×搜索树的叶子数。
空间复杂度:O(k)。返回值不计入。
"""
ans = []
path = []
def dfs(i: int , t: int) -> None:
d = k - len(path) # 还要选的数目 d
# 这个 if 条件非常有水平!
if t < 0 or t > (i*2 - d + 1) * d // 2:
return
if d == 0:
# If you don't use copty, that ans will change with path.
ans.append(path.copy())
return
for j in range(i, d - 1, -1):
path.append(j)
dfs(j - 1, t - j)
path.pop()
dfs(9, n)
return ans
22. 括号生成
题目链接
数字 n 代表生成括号的对数,请你设计一个函数,用于能够生成所有可能的并且 有效的 括号组合。
示例 1:
输入:n = 3
输出:[“((()))”,“(()())”,“(())()”,“()(())”,“()()()”]
示例 2:
输入:n = 1
输出:[“()”]
提示:
- 1 <= n <= 8
class Solution:
def generateParenthesis(self, n: int) -> List[str]:
"""
时间复杂度:O(n*C(2n,n))
空间复杂度:O(n)
"""
m = n * 2
ans = []
path = [''] * m
def dfs(i: int, open: int) -> None:
if i == m:
ans.append(''.join(path))
return
if open < n:
path[i] = '('
dfs(i + 1, open + 1)
if i - open < open:
path[i] = ')'
dfs(i + 1, open)
dfs(0, 0)
return ans
排列型
46. 全排列
题目链接
给定一个不含重复数字的数组 nums ,返回其 所有可能的全排列 。你可以 按任意顺序 返回答案。
示例 1:
输入:nums = [1,2,3]
输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
示例 2:
输入:nums = [0,1]
输出:[[0,1],[1,0]]
示例 3:
输入:nums = [1]
输出:[[1]]
提示:
- 1 <= nums.length <= 6
- -10 <= nums[i] <= 10
- nums 中的所有整数 互不相同
class Solution:
def permute(self, nums: List[int]) -> List[List[int]]:
"""
时间复杂度:O(n⋅n!),其中n为nums的长度。
时空复杂度:O(n)
"""
n = len(nums)
ans = []
path = [0] * n
on_path = [False] * n
def dfs(i: int) -> None:
if i == n:
ans.append(path.copy())
return
for j, on in enumerate(on_path):
if not on:
path[i] = nums[j]
on_path[j] = True
dfs(i + 1)
on_path[j] = False
dfs(0)
return ans
51. N 皇后
题目链接
按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。
n 皇后问题 研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。
给你一个整数 n ,返回所有不同的 n 皇后问题 的解决方案。
每一种解法包含一个不同的 n 皇后问题 的棋子放置方案,该方案中 ‘Q’ 和 ‘.’ 分别代表了皇后和空位。
示例 1:
输入:n = 4
输出:[[“.Q…”,“…Q”,“Q…”,“…Q.”],[“…Q.”,“Q…”,“…Q”,“.Q…”]]
解释:如上图所示,4 皇后问题存在两个不同的解法。
示例 2:
输入:n = 1
输出:[[“Q”]]
提示:
- 1 <= n <= 9
class Solution:
def solveNQueens(self, n: int) -> List[List[str]]:
"""
时间复杂度:O(n^2*n!)。
搜索树中至多有O(n!)个叶子,
每个叶子生成答案每次需要O(n^2 )的时间,
空间复杂度:O(n)
"""
ans = []
queens = [0] * n
col = [False] * n
diag1 = [False] * (n * 2 - 1)
diag2 = [False] * (n * 2 - 1)
def dfs(r : int) -> None:
if r == n:
ans.append(
['.' * c + 'Q' + '.' *
(n - 1 - c) for c in queens]
)
return
# 在 () 放皇后
for c, ok in enumerate(col):
if not ok and not diag1[r+c] and not diag2[r-c]:
queens[r] = c
col[c] = diag1[r+c] = diag2[r-c] = True
dfs(r + 1)
col[c] = diag1[r+c] = diag2[r-c] = False
dfs(0)
return ans