一条直线(x1,y1) (x2,y2)
另一条直线(x3,y3) (x4,y4)
(y1 - y2)x - (x1 - x2)y = (y1 - y2)x1 - (x1 - x2)y1
(y3 - y4)x - (x3 - x4)y = (y3 - y4)x3 - (x3 - x4)y3
有解为交点,无解则平行
ax + by = e
cx + dy = f
x = (ed - bf) / (ad - bc)
y = (af - ec) / (ad - bc)
如果ad - bc 为0 ,则平行
三角形面积公式:
s=(边1 + 边2 + 边3)/2
面积 = √s(s-边1)(s-边2)(s-边3)