1. 引言
在人工智能(AI)应用中,模型通常需要访问外部资源或执行特定操作,例如数据库查询、调用外部API或执行计算任务。Spring AI,作为Spring官方开源的AI应用开发框架,旨在简化将AI功能集成到应用程序的过程,避免不必要的复杂性。
Spring AI的发展历程
Spring AI项目的灵感来源于著名的Python项目(如LangChain和LlamaIndex),但并非简单的移植。这个项目的目标是让生成式AI应用不仅局限于Python开发者,而是能够在多个编程语言中广泛应用。Spring AI的核心价值在于解决AI集成的根本问题——如何将企业的数据和API与AI模型连接起来。通过提供一个抽象层,Spring AI使得开发者能够灵活地替换组件,轻松构建AI应用。
Spring AI的版本演进
Spring AI自发布以来,经过了多个版本的迭代更新,每个版本都带来了新的特性和改进,以下是一些重要版本的发布情况:
- 2024年5月30日:发布了1.0.0 Milestone 1版本,标志着API的基本确定,功能逐步完善。
- 2024年8月23日:发布了1.0.0 Milestone 2版本,增强了可观察性功能,提高了监控和调试能力。
- 2024年10月8日:发布了1.0.0 Milestone 3版本,进一步扩展了对多种AI模型的支持。
- 2024年11月20日:发布了1.0.0 Milestone 4版本,加入了对Amazon Bedrock Converse API的支持,提升了与Amazon模型的兼容性。
- 2025年2月14日:发布了1.0.0 Milestone 6版本,带来了多项新特性和改进,进一步巩固了框架的稳定性。
Spring AI的主要功能
Spring AI为开发者提供了多种AI功能的支持,包括:
- 智能聊天:集成大型语言模型(LLM),实现自然语言处理和对话生成。
- 文本生成:利用AI模型生成创意文本内容,例如文章、故事等。
- 图像生成:通过文本提示生成图像,支持多种图像生成模型。
- 音频处理:实现语音转文本和文本转语音功能,增强应用的交互性。
- 功能调用:允许模型请求执行客户端工具和函数,以访问实时信息。
2. 函数调用(Function Calling)
2.1 功能与作用
在AI应用中,模型常常需要访问外部资源或执行特定操作(如数据库查询、调用API等)。函数调用功能允许AI模型在生成响应时,调用预定义的外部函数或服务,以获取模型无法直接生成的信息。举个例子,模型可以通过调用天气查询函数,获取实时天气数据。
2.2 实现方式
在Spring AI中,函数调用的实现步骤如下:
-
定义函数:开发者创建一个实现
Function
接口的Java类,明确函数的输入输出类型。例如,定义一个获取天气信息的函数:@Component public class WeatherFunction implements Function<WeatherFunction.WeatherRequest, String> { @Override public String apply(WeatherRequest request) { return "The weather in " + request.getCity() + " is sunny."; } public static class WeatherRequest { private String city; public String getCity() { return city; } public void setCity(String city) { this.city = city; } } }
-
注册函数:将函数注册为Spring Bean,使其能被Spring AI识别和调用:
@Configuration public class FunctionConfig { @Bean @Description("获取指定城市的天气信息") public Function<WeatherFunction.WeatherRequest, String> weatherFunction() { return new WeatherFunction(); } }
-
配置模型:在Spring AI的聊天客户端配置中,指定模型可以调用的函数:
@Configuration public class ChatConfig { @Autowired private ChatClient.Builder chatClientBuilder; @Bean public ChatClient chatClient() { return chatClientBuilder .withOptions(ChatOptions.builder().withFunction("weatherFunction").build()) .build(); } }
-
模型调用函数:模型在生成响应时,可以通过请求调用外部函数,得到结果:
@RestController public class ChatController { @Autowired private ChatClient chatClient; @GetMapping("/chat") public String chat(@RequestParam String input) { WeatherFunction.WeatherRequest request = new WeatherFunction.WeatherRequest(); request.setCity(input); String response = chatClient.prompt().user(input).functions("weatherFunction").call().content(); return response; } }
注意:需要注意的是,Spring AI中的函数调用功能已被弃用,建议使用工具调用(Tool Calling)来实现类似功能。
3. 工具调用(Tool Calling)
3.1 功能与作用
工具调用允许AI模型在生成响应时调用外部工具或服务。这些工具能够帮助模型获取实时数据、执行特定操作或增强其功能。例如,模型可以调用天气查询工具来获取实时天气信息,或调用计算工具进行复杂的数学运算。
3.2 实现方式
工具调用的实现步骤与函数调用类似,但使用的是外部工具而非预定义的函数。以下是具体步骤:
-
定义工具接口:开发者定义一个接口,声明工具的方法:
public interface WeatherTool { String getWeather(String city); }
-
实现工具接口:编写具体的工具实现类,处理工具的业务逻辑:
@Component public class WeatherToolImpl implements WeatherTool { @Override public String getWeather(String city) { return "The weather in " + city + " is sunny."; } }
-
注册工具为Spring Bean:将工具实现类注册为Spring Bean,以便Spring容器管理:
@Configuration public class ToolConfig { @Bean public WeatherTool weatherTool() { return new WeatherToolImpl(); } }
-
配置模型使用工具:在Spring AI配置中,指定模型使用的工具:
@Configuration public class ChatConfig { @Autowired private ChatClient.Builder chatClientBuilder; @Bean public ChatClient chatClient() { return chatClientBuilder .withOptions(ChatOptions.builder().withTool("weatherTool").build()) .build(); } }
-
模型调用工具:模型在与用户交互时,通过工具调用获取所需的响应:
@RestController public class ChatController { @Autowired private ChatClient chatClient; @GetMapping("/chat") public String chat(@RequestParam String input) { String response = chatClient.prompt().user(input).tools("weatherTool").call().content(); return response; } }
注意:工具调用功能也已被标记为弃用,推荐使用智能体(Agent)来实现类似功能。
4. 智能体(Agent)
4.1 功能与作用
智能体(Agent)是能够自主决策并采取行动的软件实体。不同于函数调用和工具调用,智能体不仅能够执行预定义的操作,还能够根据环境变化和任务需求,动态选择并调用适当的工具或服务来完成复杂任务。
4.2 实现方式
智能体的实现涉及多个关键组件,主要包括:
- 模型上下文协议(MCP):用于规范如何向大型语言模型(LLM)提供上下文信息。通过MCP,智能体可以与不同的数据源和工具交互,实现数据获取和处理。
- 智能体配置与实现:创建智能体并定义其行为。例如,可以创建一个与文件系统交互的智能体。
- 智能体与模型集成:在Spring AI配置中,定义智能体,并与AI模型进行集成,使其能够在生成响应时调用智能体的功能。
注意:在最新版本的Spring AI中,智能体功能已得到优化,建议开发者参考官方文档,了解最新实现方式和最佳实践。
5. 从函数调用(FunctionCallbac)到工具调用(ToolCallback)
随着Spring AI的持续发展,函数调用(Function Callback)功能已被标记为过时(Deprecated),未来的趋势是采用工具调用(Tool Callback)机制。这种转变旨在提供更高的灵活性和扩展性,使开发者能够更方便地将外部工具和服务集成到AI应用中。
为什么从FunctionCallback迁移到ToolCallback
Spring AI团队决定将函数调用功能从FunctionCallback
迁移到ToolCallback
,主要基于以下考虑:
-
功能增强:
ToolCallback
提供了比FunctionCallback
更丰富的功能,包括更灵活的工具定义和调用方式,使开发者能够更精确地控制工具的行为。 -
一致性和标准化:采用
ToolCallback
有助于统一工具调用的接口和规范,提升代码的可读性和维护性,减少因使用过时接口而可能引发的问题。 -
未来兼容性:由于
FunctionCallback
已被标记为过时,未来版本的Spring AI可能会移除对其的支持。为了确保应用的长期兼容性和稳定性,建议开发者尽早迁移至ToolCallback
。
因此,Spring AI强烈建议开发者将现有的FunctionCallback
实现迁移到ToolCallback
,以充分利用新版本带来的改进和优势,确保应用的可维护性和可扩展性。
6. 总结
在Spring AI的架构中,函数调用、工具调用和智能体(Agent)是构建高效、灵活应用的关键组成部分。函数调用使模型能够执行特定操作,工具调用则扩展了模型与外部系统交互的能力,而智能体利用这些功能实现自主决策和任务执行。理解并熟练运用这些概念,开发者可以设计出更智能、响应迅速的应用,满足多样化的业务需求。