aspen稳态导出动态_如何使用ASPEN软件模拟完成精馏的设计和控制马后炮

本文探讨如何使用ASPEN软件进行精馏塔的设计和控制,强调稳态计算在选择控制结构中的重要性。通过分析不同控制结构,如单端控制和双温控制系统,以及利用温度传感器推理控制组分浓度。文章介绍了多种稳态计算方法,用于确定最佳塔板温度控制策略,并指出这些方法在ASPEN Plus等稳态模拟器中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如何使用

ASPEN

TM

软件模拟完成精馏的设计和控制

威廉

·

L

·

鲁平

博士

6

章:使用稳态计算选择控制结构

Steadt-state Calculations for Control Structure Selection

在我们转入将稳态模拟转化为动态模拟细节讨论之前,要先讨论一些重要的稳态模拟计算方法。因为经常被用于精馏

设计中帮助为其选择一个实用且高效的控制结构,。故此类讨论可能是一定意义的。

绝大部分精馏塔的设计是为了将两种关键组分分离获得指定的分离效果。通常是两个设计自由度指定为馏出物中重关

键组分的浓度和塔底产品中轻关键组分的浓度。因此,在精馏塔的操作和控制中,

理想的

控制结构需测定两股产品的组成

并操控两输入变量(如,回流流量和再沸器的输入热量),从而能够达到两股产品中关键组分的纯度要求。

然而,由于一些现实的原因,很少有精馏塔使用这种理想的控制结构。组分检测仪通常购价昂贵且维修成本高,其可

靠性对连续在线控制而言,有时略显不足。如果使用色层法,还会在控制回路中引入死时间。此外,不使用直接测量组分

法,通常也有可能取得非常高效的控制效果。

温度测量被广泛应用于组分的推理控制。温度传感器廉价而又可靠,在控制回路上只有很小的测量滞后。对恒压二元

体系,温度与组成是一一对应相关的。这在多组分体系中不适用,但精馏塔中合适位置的温度通常能够相当准确地提供关

于关键组分浓度的信息。

在单端控制结构中,只需控制某块塔板的温度;选择剩下的

控制自由度

时应使产品质量可变性最小。例如,确定一定

的回流比

RR

或者固定回流与进料流量的比值

R/F

。有时候,需要控制两个温度(双温控制系统)。我们将在本章中讨论这

些被选方案。

如果选择使用塔板温度控制,那么问题便是选择最佳一块或数块塔板,该处的温度保持恒定。在精馏文献中,这个问

题已讨论了半个世纪以上,且提出了一些可选择的方法。我们将一一审视这些方法,并举例说明其在各个系统中的有效性。

需要重点关注的是,所有这些方法都仅使用稳态信息,因此,如

Aspen Plus

之类的稳态过程模拟器可便捷地用于计算。

这些方法均要求恒定某些变量的同时将另一些变量变化。例如,两股产品的组成或是某块塔板温度及回流流量恒定不变,

而进料组成变化。在

Aspen Plus

中,

“Design

Spec/Vary”

功能可以用来使期望的自变量恒定不变,计算所有其余应变量的

值。

在一些方法中,变化的变量是进料组成。但对于任何一种方法,均不考虑进料流量。这是因为进料流量的扰动可以直

接通过固定受控变量的流量与进料量的比值来处理。当然,这需要假设整个塔的塔板效率固定不变。同时,还需要假设每

个塔板的压力均不变。这很少见,因为当气液流率变化时,塔板压降及塔板持液高度也会发生变化。但是,这些影响均小

到不足以对控制系统造成很大的不利影响。

6.1

方法概要

6.1.1

斜率判据

内容概要:《2024年中国城市低空经济发展指数报告》由36氪研究院发布,指出低空经济作为新质生产力的代表,已成为中国经济新的增长点。报告从发展环境、资金投入、创新能力、基础支撑发展成效五个维度构建了综合指数评价体系,评估了全国重点城市的低空经济发展状况。北京深圳在总指数中名列前茅,分别以91.2684.53的得分领先,展现出强大的资金投入、创新能力基础支撑。低空经济主要涉及无人机、eVTOL(电动垂直起降飞行器)直升机等产品,广泛应用于农业、物流、交通、应急救援等领域。政策支持、市场需求技术进步共同推动了低空经济的快速发展,预计到2026年市场规模将突破万亿元。 适用人群:对低空经济发展感兴趣的政策制定者、投资者、企业研究人员。 使用场景及目标:①了解低空经济的定义、分类发展驱动力;②掌握低空经济的主要应用场景市场规模预测;③评估各城市在低空经济发展中的表现潜力;④为政策制定、投资决策企业发展提供参考依据。 其他说明:报告强调了政策监管、产业生态建设区域融合错位的重要性,提出了加强法律法规建设、人才储备基础设施建设等建议。低空经济正加速向网络化、智能化、规模化集聚化方向发展,各地应找准自身比较优势,实现差异化发展。
数据集一个高质量的医学图像数据集,专门用于脑肿瘤的检测分类研究以下是关于这个数据集的详细介绍:该数据集包含5249张脑部MRI图像,分为训练集验证集。每张图像都标注了边界框(Bounding Boxes),并按照脑肿瘤的类型分为四个类别:胶质瘤(Glioma)、脑膜瘤(Meningioma)、无肿瘤(No Tumor)垂体瘤(Pituitary)。这些图像涵盖了不同的MRI扫描角度,包括矢状面、轴面冠状面,能够全面覆盖脑部解剖结构,为模型训练提供了丰富多样的数据基础。高质量标注:边界框是通过LabelImg工具手动标注的,标注过程严谨,确保了标注的准确性可靠性。多角度覆盖:图像从不同的MRI扫描角度拍摄,包括矢状面、轴面冠状面,能够全面覆盖脑部解剖结构。数据清洗与筛选:数据集在创建过程中经过了彻底的清洗,去除了噪声、错误标注质量不佳的图像,保证了数据的高质量。该数据集非常适合用于训练验证深度学习模型,以实现脑肿瘤的检测分类。它为开发医学图像处理中的计算机视觉应用提供了坚实的基础,能够帮助研究人员开发人员构建更准确、更可靠的脑肿瘤诊断系统。这个数据集为脑肿瘤检测分类的研究提供了宝贵的资源,能够帮助研究人员开发出更准确、更高效的诊断工具,从而为脑肿瘤患者的早期诊断治疗规划提供支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值