离散均匀分布的估计| Serial Number Estimation

Serial Number Estimation

Parameter description

  • If θ \theta θ is contained in a function, n n n would be the total sample numbers, and θ ^ \hat{\theta} θ^ would be the estimator for actual maximum ID.
  • If M M M is contained in a function, k k k would be the total sample numbers, and N N N would be the actual maximum ID. As for M M M, that is a random variable of maximum ID in a random sample.

Method 1: Probability of each sample

The estimator used to predict the maximum value can also be determined by assuming that the probability of getting each sample is uniform where θ \theta θ represents the actual maximum ID in each day.

P ( x ) = 1 θ P(x) = \frac{1}{\theta} P(x)=θ1

Method 2: Probability of maximum sample

According to the Assumption 1, we consider the observed maximum ID as a r.v M, and take the maximum ID we encountered in one specific day as m (i.e. x n : n x_{n:n} xn:n). Assume that the N is the actual maximum ID and k represents the number of ill sample, the probability mass function (PMF) of getting the maximum ID can be expressed as follows:

P ( M = m ) = C k − 1 m − 1 C k N P(M = m) = \frac{C_{k-1}^{m-1}}{C_k^N} P(M=m)=CkNCk1m1

Point Estimate

Estimators intuited from discrete uniform distribution

Estimator 1: 2*Mean-1

Consider continuous distribution for this problem, i.e. U N I F ( 0 , θ ) UNIF(0,\theta) UNIF(0,θ)

F o r   U N I F ( 0 , θ ) , E ( X ) = θ 2 , V a r ( X ) = θ 2 12 For~UNIF(0,\theta),E(X)=\frac{\theta}{2},Var(X)=\frac{\theta^2}{12} For UNIF(0,θ),E(X)=2θ,Var(X)=12θ2

We consider the following estimator:
θ ^ 1 = 2 n ∑ i = 1 n X i − 1   f o r   d i s c r e t e   d i s t r u b u t i o n θ ^ 1 = 2 n ∑ i = 1 n X i   f o r   c o n t i n u o u s   d i s t r u b u t i o n E ( θ ^ 1 ) = E ( 2 n ∑ i = 1 n X i − 1 ) = 2 E ( X ‾ ) = θ V a r ( θ ^ 1 ) = 4 n 2 ∑ i = 1 n V a r ( X i ) = 4 n 2 ∑ i = 1 n θ 2 12 = θ 2 3 n ∴ θ ^ 1   i s   a n   u n b i a s e d   e s t i m a t o r   w i t h   V a r = θ 2 3 n \widehat{\theta}_1=\frac{2}{n}\sum^n_{i=1}X_i-1~for~discrete ~distrubution\\ \widehat{\theta}_1=\frac{2}{n}\sum^n_{i=1}X_i~for~continuous ~distrubution\\ E(\widehat{\theta}_1)=E(\frac{2}{n}\sum^n_{i=1}X_i-1)=2E(\overline{X})=\theta\\ Var(\widehat{\theta}_1)=\frac{4}{n^2}\sum_{i=1}^nVar(X_i)=\frac{4}{n^2}\sum_{i=1}^n\frac{\theta^2}{12}=\frac{\theta^2}{3n}\\ \therefore \widehat{\theta}_1~is~an~unbiased~estimator ~with~Var=\frac{\theta^2}{3n}\\ θ 1=n2i=1nXi1 for discrete distrubutionθ 1=n2i=1nXi for continuous distrubutionE(θ 1)=E(n2i=1nXi1)=2E(X)=θVar(θ 1)=n24i=1nVar(Xi)=n24i=1n12θ2=3nθ2θ 1 is an unbiased estimator with Var=3nθ2

Estimator 2: Max + Avg GAP

Consider other form of improvement from MLE estimator, i.e. using average approach to estimate the GAP between maximum and the upper limit:

θ ^ 2 = X n : n + 1 n − 1 ∑ i > j ( X i − X j − 1 ) … f o r   d i s c r e t e   c a s e θ ^ 2 = X n : n + 1 n − 1 ∑ i > j ( X i − X j ) … f o r   c o n t i n u o u s   c a s e \widehat{\theta}_2 = X_{n:n}+\frac{1}{n-1}\sum_{i>j}(X_i-X_j-1)\quad\dots for~discrete~case\\ \widehat{\theta}_2 = X_{n:n}+\frac{1}{n-1}\sum_{i>j}(X_i-X_j) \quad\dots for~continuous~case θ 2=Xn:n+n11i>j(XiXj1)for discrete caseθ 2=Xn:n+n11i>j(XiXj)for continuous case

Calculate the expected value and variance to determine if this estimator is biased or not.
E ( θ ^ 2 ) = E ( X n : n ) + 1 n − 1 ∑ i > j E ( X i − X j ) = n θ n + 1 V a r ( θ ^ 2 ) = n θ 2 ( n + 1 ) ( n − 1 ) ( n + 2 ) E(\widehat{\theta}_2) = E(X_{n:n}) + \frac{1}{n-1}\sum_{i>j}E{(X_i-X_j)} = \frac{n\theta}{n+1} \\ Var(\hat{\theta}_2) = \frac{n\theta^2}{(n+1)(n-1)(n+2)} E(θ 2)=E(Xn:n)+n11i>jE(XiXj)=n+1nθVar(θ^2)=(n+1)(n1)(n+2)nθ2
Therefore, θ 2 \theta_2 θ2 is a biased estimator.

Estimator3: Min+max estimator

We know that maximum sample ID is what’s closed to the upper limit, and we could add more information to it. Intuitively, we first consider minimum sample ID + maximum sample ID:
θ ^ 3 = x 1 : n + x n : n F X n : n ( x ) = [ F X ( x ) ] n = x n θ n , f X n : n ( x ) = n x n − 1 θ n E [ X n : n ] = ∫ x n x n − 1 θ n d x = n n + 1 θ E [ X n : n 2 ] = ∫ x 2 n x n − 1 θ n d x = n n + 2 θ 2 F X 1 : n ( x ) = 1 − [ 1 − F X ( x ) ] n = 1 − ( θ − x θ ) n , f X 1 : n ( x ) = n ( θ − x ) n − 1 θ n E [ X 1 : n ] = ∫ x n ( θ − x ) n − 1 θ n d x = 1 n + 1 θ E [ X 1 : n 2 ] = ∫ x 2 n ( θ − x ) n − 1 θ n d x = 2 n ( n + 1 ) θ 2 E ( θ ^ 3 ) = E ( x 1 : n ) + E ( x n : n ) = θ V a r ( θ ^ 3 ) = V a r ( X 1 : n ) + V a r ( X n : n ) + 2 C o v ( X 1 : n , X n : n ) = 2 n ( n + 1 ) θ 2 − ( 1 n + 1 θ ) 2 + n n + 2 θ 2 − ( n n + 1 θ ) 2 + 2 C o v ( X 1 : n , X n : n ) S i n c e   t h e   j o i n t   d i s t r i b u t i o n   o f   t h e   o r d e r   s t a t i s t i c s   o f   t h e   u n i f o r m   d i s t r i b u t i o n   i s f u i , v j ( u , v ) = n ! u i − 1 ( i − 1 ) ! ( v − u ) j − i − 1 ( j − i − 1 ) ! ( 1 − v ) n − j ( n − j ) ! C o v ( u k , v j ) = j ( n − k − 1 ) ( n − 1 ) 2 ( n + 2 ) V a r ( θ ^ 3 ) = 2 θ 2 n ( n + 2 ) + 2 n 2 θ 2 ( n + 1 ) 2 ( n + 2 ) \widehat{\theta}_3=x_{1:n}+x_{n:n}\\ F_{X_{n:n}}(x) =[F_X(x)]^n=\frac{x^n}{\theta^n},f_{X_{n:n}}(x)=n\frac{x^{n-1}}{\theta^n}\\ E[X_{n:n}]=\int xn\frac{x^{n-1}}{\theta^n}dx=\frac{n}{n+1}\theta\\ E[X_{n:n}^2] =\int x^2n\frac{x^{n-1}}{\theta^n}dx=\frac{n}{n+2}\theta^2\\ F_{X_{1:n}}(x) =1-[1-F_X(x)]^n=1-(\frac{\theta-x}{\theta})^n,f_{X_{1:n}}(x)=\frac{n (\theta-x)^{n-1}}{\theta^n}\\ E[X_{1:n}]=\int x\frac{n (\theta-x)^{n-1}}{\theta^n}dx=\frac{1}{n+1}\theta\\ E[X_{1:n}^2] =\int x^2\frac{n (\theta-x)^{n-1}}{\theta^n}dx=\frac{2}{n(n+1)}\theta^2\\ E(\widehat{\theta}_3)=E(x_{1:n})+E(x_{n:n})=\theta\\ Var(\hat{\theta}_3)=Var(X_{1:n})+Var(X_{n:n})+2Cov(X_{1:n},X_{n:n})\\ =\frac{2}{n(n+1)}\theta^2-(\frac{1}{n+1}\theta)^2 +\frac{n}{n+2}\theta^2-(\frac{n}{n+1}\theta)^2+2Cov(X_{1:n},X_{n:n})\\ Since~the~ joint~ distribution~ of ~the~ order~ statistics~ of~ the~ uniform~ distribution~is\\ f_{u_i,v_j}(u,v)=n!\frac{u^{i-1}}{(i-1)!}\frac{(v-u)^{j-i-1}}{(j-i-1)!}\frac{(1-v)^{n-j}}{(n-j)!}\\ Cov(u_k,v_j)=\frac{j(n-k-1)}{(n-1)^2(n+2)}\\ Var(\hat{\theta}_3)=\frac{2\theta^2}{n(n+2)}+\frac{2n^2\theta^2}{(n+1)^2(n+2)} θ 3=x1:n+xn:nFXn:n(x)=[FX(x)]n=θnxn,fXn:n(x)=nθnxn1E[Xn:n]=xnθnxn1dx=n+1nθE[Xn:n2]=x2nθnxn1dx=n+2nθ2FX1:n(x)=1[1FX(x)]n=1(θθx)n,fX1:n(x)=θnn(θx)n1E[X1:n]=xθnn(θx)n1dx=n+11θE[X1:n2]=x2θnn(θx)n1dx=n(n+1)2θ2E(θ 3

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值