多分类与多标签分类的损失函数

使用神经网络处理多分类任务时,一般采用 softmax 作为输出层的激活函数,使用categorical_crossentropy(多类别交叉熵损失函数)作为损失函数,输出层包含k个神经元对应k个类别。

在多标签分类任务中,一般采用 sigmoid 作为输出层的激活函数,使用 binary_crossentropy(二分类交叉熵损失函数)作为损失函数,就是将最后分类层的每个输出节点使用sigmoid激活函数激活,然后对每个输出节点和对应的标签计算交叉熵损失函数。此时最后一层的输出就不能看成一个分布了,因为加起来不为1,现在把输出层每个神经元看作是一个二项分布, 这相当于将一个多标签问题转化为了在每个标签上的二分类问题。

  • 4
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
分类Dice损失函数是一种用于语义分割任务的损失函数。它是基于Dice系数的度量,用于衡量模型预测结果与真实标签之间的相似度。Dice损失函数可以将预测结果与真实标签进行对比,并优化模型参数以最大化Dice系数。 在多分类任务中,每个类别都有一个对应的Dice损失函数。常见的做法是使用多个Dice损失函数对每个类别进行独立的分割,然后将这些损失函数整合到一个总的损失函数中。这个总的损失函数被称为Generalized Dice损失函数。 Generalized Dice损失函数的计算方式如下: 1. 计算每个类别的Dice系数:对于每个类别i,将模型预测结果与真实标签进行相交运算并计算相交区域的像素数量,然后计算相交区域的大小与预测区域和真实区域大小之和的比值,得到Dice系数Di。 2. 计算类别权重:对于每个类别i,计算其在真实标签中的像素数量与总像素数量的比值,得到类别权重Wi。 3. 将Dice系数与类别权重相乘并求和:将每个类别的Dice系数Di与对应的类别权重Wi相乘,并将所有类别的结果求和,得到Generalized Dice损失函数L。 通过最小化Generalized Dice损失函数,模型可以更好地适应多分类语义分割任务,提高预测结果的准确性。 参考文献: - 引用: 【损失函数合集】超详细的语义分割中的Loss大盘点 - 引用: Tensorflow入门教程(四十七)——语义分割损失函数总结 - 引用: 论文地址:A survey of loss functions for semantic segmentation code地址:Semantic-Segmentation-Loss-Functions

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值