关于二分类,多分类,及多标签分类的损失函数详解及Pytorch实现

相信很多小伙伴最开始都是从分类任务入手深度学习这个领域的吧,这个就类似学习代码的第一课,“Hello world”一样。深度学习中,除了模型设计之外,最重要的想必就是选取合适的损失函数了。不过一般实验中,损失函数的调用十分简单,也就是一行代码的事情,但是最近发现,好多小伙伴,对于损失函数的基础意义及实现细节,还是不甚了解,所以在此对分类任务中常用的交叉熵损失函数进行详细的介绍。

1. 事件发生的概率与信息量和信息熵

损失函数的目标就是想通过计算网络输出与实际标签之间的差异,然后通过反向传播更新网络的权重,使得输出越来越接近实际标签值。对于分类任务来说,网络输出的结果就是预测每一个类别的概率值,接着就是如何设计损失函数,使得标签为正的类别的概率值越高。对于优化问题,我们需要设计目标函数存在一个下界,在优化过程当中,如果优化算法能够使目标函数不断减小,根据单调有界准则,这个优化算法就能证明是收敛有效的。这时候信息量的概念就引进来了,信息量的基本想法是:一个不太可能发生的事件居然发生了,我们收到的信息要多于一个非常可能发生的事件发生。从这句话中,我们可以看出,事件包含的信息量应与其发生的概率负相关。所以现在目标就是如何最小化我们的信息量,使得对应的概率也就可以变得越大。

 

 2. 相对熵(KL散度)

3. 交叉熵

关于信息量,与信息熵,相对熵以及交叉熵的具体解释和定义,可以参考这篇博文交叉熵损失函数(Cross Entropy Loss),讲解的十分详细。

4. 交叉熵损失函数

刚刚说到,交叉熵是信息论中的一个概念,它与事件的概率分布密切相关,这也就是为什么神经网络在使用交叉熵损失函数时会先使用softmax函数或者sigmoid函数将网络的输出转换为概率值。

4.1 多分类

每个样本只能有一个标签,比如ImageNet图像分类任务,或者MNIST手写数字识别数据集,每张图片只能有一个固定的标签。

对单个样本,假设真实分布为y,网络输出分布为\widehat{y},总的类别数为n,则在这种情况下,交叉熵损失函数的计算方法如下所示,我们可以看出,实际上也就是计算了标签类别为1的交叉熵的值,使得对应的信息量越来越小,相应的概率也就越来越大了。

 具体的Pytorch实现,如下所示,该函数,同时包含了softmax计算概率,以及后续计算交叉熵的两个步骤:

loss = nn.CrossEntropyLoss()

 4.2 多标签分类

多标签分类任务,即一个样本可以有多个标签,比如一张图片中同时含有“猫”和“狗”,这张图片就同时拥有属于“猫”和“狗”的两种标签。在这种情况下,我们将sigmoid函数作为网络最后一层的输出,得出每个类别预测为1的概率。以图像识别任务为例,网络最后一层的输出应该理解为:网络认为图片中含有这一类别物体的概率。而每一类的真实标签都只有两种可能值,即“图片中含有这一类物体”和“图片中不含有这一类物体”,这是一个二项分布。综上所述,对多标签类任务中的每一类单独分析的话,真实分布是一个二项分布,可能的取值为0或者1,而网络预测的分布可以理解为标签是1的概率。此外,由于多标签分类任务中,每一类是相互独立的,所以网络最后一层神经元输出的概率值之和并不等于1。对多标签分类任务中的一类任务来看,交叉熵损失函数为:

 

 

 具体的Pytorch实现,如下所示,该函数,同时包含了sigmoid计算概率,以及后续计算交叉熵的两个步骤:

loss = nn.BCELoss()

4.3 二分类

对于二分类,既可以选择多分类的方式,也可以选择多标签分类的方式进行计算,结果差别也不会太大。

  • 11
    点赞
  • 54
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
PyTorch是一个流行的深度学习框架,可以用于实现各种损失函数,包括GHM损失函数。GHM(Gradient Harmonized Mixture)损失函数是一种用于解决样本不平衡问题的损失函数。 下面是使用PyTorch实现二分类GHM损失函数的示例代码: ```python import torch import torch.nn as nn class GHMLoss(nn.Module): def __init__(self, bins=10, momentum=0): super(GHMLoss, self).__init__() self.bins = bins self.momentum = momentum self.edges = torch.arange(bins+1).float() / bins self.edges[-1] += 1e-6 if momentum > 0: self.acc_sum = torch.zeros(bins) def forward(self, pred, target): g = torch.abs(pred.detach() - target) weights = torch.zeros_like(g) tot = g.numel() n = 0 for i in range(self.bins): inds = (g >= self.edges[i]) & (g < self.edges[i+1]) num_in_bin = inds.sum().item() if num_in_bin > 0: if self.momentum > 0: self.acc_sum[i] = self.momentum * self.acc_sum[i] + (1 - self.momentum) * num_in_bin weights[inds] = tot / self.acc_sum[i] else: weights[inds] = tot / num_in_bin n += 1 weights /= n loss = nn.BCELoss(weight=weights)(pred, target) return loss # 使用示例 criterion = GHMLoss() pred = torch.randn(10, 1) target = torch.randint(0, 2, (10, 1)).float() loss = criterion(pred, target) print(loss) ``` 在上述代码中,我们定义了一个名为`GHMLoss`的自定义损失函数类,它继承自`nn.Module`。在类的初始化方法中,我们设置了GHM损失函数的参数,包括`bins`(直方图的箱数)和`momentum`(动量参数)。在前向传播方法中,我们计算了样本的梯度差异度量`g`,然后根据梯度差异将样本分成不同的区间,并计算每个区间的权重。最后,我们使用带权重的二分类交叉熵损失函数`nn.BCELoss`计算最终的损失。 你可以根据自己的需求调整`bins`和`momentum`参数,并将上述代码集成到你的二分类模型中进行训练。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值