多标签分类的激活函数和损失函数

        刚入门DeepLearning不久,前一段时间一直在学习cifar10的分类,突然最近要做一个多标签的任务,突然有点不知所措,不知从何下手了。于是查阅了一些资料,了解一下多分类任务多标签分类任务的异同。

       - 多分类任务:只有一个标签,但是标签有多种类别。

        -多标签分类任务:一条数据可能有一个或者多个标签,比如一个病人的眼底检测报告,它可能被标记患有糖尿病、高血压多个标签。

        多标签分类任务的特点:1.类别标的数量是不确定的;2.类别标签之间可能存在相互依赖关系。

        -在建立模型的时候,多分类任务一般采用softmax作为输出层的激活函数,用categorical_crossentropy作为损失函数;多标签分类一般采用sigmoid作为输出层的激活函数,用binary_crossentropy作为损失函数。

 

分类问题名称输出层使用激活函数对应的损失函数
二分类sigmoidbinary_crossentrppy
多分类softmaxcategorical_crossentropy
多标签分类sigmoidbinary_crossentropy

表来自:https://blog.csdn.net/weixin_33796177/article/details/88022703

多标签分类(Multi-label classification)是一种机器学习任务,其中每个样本可以属于多个类别中的任意一个或多个。常用的损失函数有以下几种: 1. **Binary Cross-Entropy (BCE) Loss**:这是最基础的损失函数,用于二分类问题,但可以通过扩展处理多标签问题,对每个类别独立计算损失。 2. **Sigmoid BCE Loss**:类似于BCE,但使用sigmoid激活函数为每个类别生成概率,适用于每个类别独立的概率预测。 3. **Multi-label BCE Loss**:直接应用BCE到所有类别,但通常会对每个类别的预测概率取平均后再计算总损失,以避免正负样本不平衡导致的问题。 4. **Hamming Loss**:衡量的是预测和真实标签之间的“不同”类别数,适用于对每个标签都是精确匹配的情况。 5. **Intersection over Union (IoU) Loss or Jaccard Loss**:用于图像分割或多边形识别任务,衡量预测和真实区域的重叠度。 6. **Hinge Loss**:常用于支持向量机(SVM)中,不太常见于多标签分类,但可以调整为多标签版本。 7. **Focal Loss**:为了解决类别不平衡问题,给少数类别较大的权重,特别是当某些类别非常容易预测而其他较难时。 8. **LogLoss or Cross-Entropy Loss with Class Weights**:可以为不同类别分配不同的权重,以补偿不同类别的重要性。 选择哪种损失函数主要取决于具体问题、数据分布以及模型的结构。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值