训练代码_实战代码 | fastai训练一个小狗分类器

fee44ea253eee01bf6f8ff1fc3d0eaa6.png

  机器学习算法与自然语言处理推荐 

来源:AI科技大本营

作者:一杯奶茶的功夫

翻译:Vincents    

【机器学习算法与自然语言处理导读】这篇文章会讲解如何制作能够分类120种小狗的图像分类器。

这篇文章中所讲述的内容都是基于colab notebook和fastai技术的深度学习的应用。

为什么使用colab?

  • 使用colab的好处是,你不需要有任何显卡GPU,colab中提供了一块免费的k80带12G显存的GPU

  • colab是google提供的一个免费的Jupyter notebook的环境,可以省去安装它的功夫

为什么使用fastai?

  • fastai是一种超级简洁的深度学习工具,代码上甚至比当前Keras还要简洁。

  • 底层是pytorch,能够提供高速的处理性能。

和之前文章中的两个物种(猫和狗)的分类略有不同,这次使用的数据集全部是狗,需要把这些狗分到不同的类别中。也就是说,图片之间特征的区别的差异要比之前猫和狗分类的来的更加细微。

好吧,接下来我们看看如何动手制作。

1.在colab的作业本中配置fastai的环境

!curl https://course.fast.ai/setup/colab | bash

cc3dbbbcaffa0af2e1c8c3794b38c8d2.png

2.导入fastai包

from fastai import *from fastai.vision import *

3.加载kaggle.json

这里我们准备从kaggle下载所需要的狗的数据集,如果你可以从其他地方得到数据集,那么可以省略步骤3和4,按照自己的方法在环境中导入数据集即可。

!mkdir /content/.kaggle/!mkdir /content/data/dogsbreed/PATH = "/content/data/dogsbreed/"from google.colab import files# load from upload dialoguploaded = files.upload()for fn in uploaded.keys():  with open(f'/content/.kaggle/{fn}', 'wb') as f:    f.write(uploaded[fn])

4.安装kaggle环境

!chmod 600 /content/.kaggle/kaggle.json!pip install kaggle!cp /content/.kaggle/kaggle.json ~/.kaggle/kaggle.json!kaggle config set -n path -v{/content}import kaggle!kaggle competitions download -p /content/data/dogsbreed/ dog-breed-identification

4c3e8bec0ec62522038cd263b43b54ec.png

从结果中可以看到,我们已经从kaggle成功的下载了数据集文件。

5.验证GPU

torch.cuda.is_available()
#True
torch.backends.cudnn.enabled
#True

0b922c7c6b28a9bdbd8ada0e23d2d8bf.png

6.解压缩文件

! cd /content/data/dogsbreed && unzip labels.csv.zip
! cd /content/data/dogsbreed && unzip sample_submission.csv.zip
! cd /content/data/dogsbreed && unzip test.zip
! cd /content/data/dogsbreed && unzip train.zip

7.读取label.csv

labels_df=pd.read_csv(f'{PATH}labels.csv')
labels_df.head()

01f1000b081120cb54f08d23b8376454.png

这里我们可以看到labels.csv中的前五条数据

8.查看狗的类别

labels_df.pivot_table(index='breed',aggfunc=len).sort_values('id',ascending=False)

5eebccfd66a27192256989099a57f823.png

这里可以看到一共有120行数据,也就是120种狗的类别,以及每种类别里面有多少条数据。

9.加载数据集并显示

data = ImageDataBunch.from_csv(
                      PATH,
                      folder='train',
                      valid_pct=0.2,
                      ds_tfms=get_transforms(),
                      size=224,
                      test='test',
                      suffix='.jpg',
                      bs=64).normalize(imagenet_stats)
data.show_batch(rows=3, figsize=(10,12))

d3f41bdca2b005f6ee39753d49c369ba.png

如果一切顺利,这里会显示出9张狗的图片,并且图片上方会显示相应的狗的类别。

如果只显示了图片,而图片上的标签不是类别的话,那说明数据导入部分存在问题。

OK,我们继续下一步。

10.下载与训练模型并微调

learner = create_cnn(data,models.resnet101,metrics=[accuracy])
learner.fit_one_cycle(10)

54b0e08d46595e5b8eb334afc1550acd.png

这里我们设置了10个epoch,会稍微花费点时间大约40分钟。

可以看到,在最后一个epoch时候,我们的精度在89%。当然我们还可以继续调优:)

或者直接从零开始对每一层权重的训练,这都是可以的。

到这里我们就已经成功的完成了一个120种狗狗的图片分类器的制作啦,怎么样?是不是很简单?希望这篇文章可以给每一个前来阅读的朋友带来收获,对深度学习,图像分类有一个直接的体会。

如果有问题,欢迎来评论区留言讨论^^

原文链接:https://www.jianshu.com/p/ab35ed21df87

d112d18e8307938efa4f965b4b5314fd.png

推荐阅读:

限时报名 | 带学《百面机器学习》葫芦书,算法+leetcode一应俱全

漫话:如何给女朋友解释为什么双11无法修改收货地址

2019 AI 国际顶级学术会议全在这里,请查收!

cd1bd01ac2bddbaac43a51f7f8c11110.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值