cp分解实现_张量分解-CP分解

本文介绍了CP分解的概念,源于1927年Hitchcock的理论,阐述了CP分解如何将高阶张量分解为多个秩1张量的和。讨论了张量的低秩近似、CP分解的求解方法,特别是交替最小二乘法(ALS),并提及了应用,如高光谱图像去噪。
摘要由CSDN通过智能技术生成

张量分解-CP分解 2016.06.19

CP分解(Canonical Polyadic Decomposition)

1927年Hitchcock提出了CP 分解。CP 分解将一个$N$阶的张量$\mathcal{X}\in {\mathbb{R}^{ {I_1}{\mathbf{ \times }}{I_2}{\mathbf{ \times }} \cdots {\mathbf{ \times }}{I_N}}}$分解为$R$个秩为1的张量和的形式即:

\begin{equation}

\mathcal{X}=\sum \limits_{ {r} = 1}^{ {R}} \lambda_{r} a_{r}^{(1)}\circ a_{r}^{(2)}\circ \cdots a_{r}^{(N) }

\end{equation}

通常情况下$ a_{r}^{(n)}$是一个单位向量。定义$A^{(n)}=[a_{1}^{n} \quad a_{2}^{n} \quad \cdots \quad a_{R}^{n}]$,$D=diag(\lambda)$ 那么上面的公式可以写为:

\begin{equation}

\mathcal{X}=D\times_{1}A^{(1)}\times_{2}A^{(2)}\cdots\times_{N}A^{(N)}

\end{equation}

矩阵的表达形式即为:

\begin{equation}

X_{(n)}=A^{n}D(A^{(N)} \bigodot \cdots A^{(n+1)} \bigodot A^{(n-1)}\cdots

\bigodot A^{1})^T \label{eq:cpmatix}

\end{equation} 特殊的时候当张量$\mathcal{X}$的阶数为3的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值