pandas nan值判断与处理

 空值判断

df.head() #查看前5行数据
np.isnan(df).sum()  #获得nan的数量
np.isinf(df).sum()  #获得infinity的数量
df.isnull().any()   #判断哪些”列”存在缺失值
df[df.isnull().T.any().T]  #找出含有nan的所有行
df[df.isnull().values==True]  #找出含有nan的所有数据的位置

 空值处理

#空值处理方式
data.fillna(data.mean(), inplace = True)#以均值填充
data.fillna(0, inplace = True)#以0填充

data.dropna(inplace=True) #剔除空值,针对空值数量相对总体而言可以忽略的情况

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值