MIT线性代数笔记03-矩阵乘法和逆矩阵

Linear Algebra-Lecture03 矩阵乘法和逆矩阵

Gilbert Strang

在这里插入图片描述

矩阵乘法

对于矩阵乘法
A B = C \bold{AB=C} AB=C
主要有5种方法可用于计算:
【前提条件】 A , B \bold{A},\bold{B} A,B两个矩阵行列要匹配, A \bold{A} A的列数要等于 B \bold{B} B的行数。
[ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m n ] [ b 11 b 12 ⋯ b 1 p b 21 b 22 ⋯ b 2 p ⋮ ⋮ ⋱ ⋮ b n 1 b n 2 ⋯ b n p ] = [ c 11 c 12 ⋯ c 1 p c 21 c 22 ⋯ c 2 p ⋮ ⋮ ⋱ ⋮ c m 1 c m 2 ⋯ c m p ] \left[ \begin{matrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \\ \end{matrix} \right] \left[ \begin{matrix} b_{11} & b_{12} & \cdots & b_{1p} \\ b_{21} & b_{22} & \cdots & b_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{np} \\ \end{matrix} \right]= \left[ \begin{matrix} c_{11} & c_{12} & \cdots & c_{1p} \\ c_{21} & c_{22} & \cdots & c_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{mp} \\ \end{matrix} \right] a11a21am1a12a22am2a1na2namnb11b21bn1b12b22bn2b1pb2pbnp=c11c21cm1c12c22cm2c1pc2pcmp

【法一】:行 × \times ×列,取 A \bold{A} A的第 i i i行与 B \bold{B} B的的 j j j列做点积,得到 c i j c_{ij} cij

c i j = ( a i 1 , a i 2 , ⋯   , a i n ) T ( b 1 j , b 2 j , ⋯   , b n j ) c_{ij}=(a_{i1},a_{i2},\cdots ,a_{in})^T(b_{1j},b_{2j},\cdots ,b_{nj}) cij=(ai1,ai2,,ain)T(b1j,b2j,,bnj)

【法二】:按列乘。取 B \bold{B} B中第1列与 A \bold{A} A乘,得到 C \bold{C} C的第1列,取 B \bold{B} B中第2列与 A \bold{A} A乘,得到 C \bold{C} C的第2列, ⋯ \cdots ,取 B \bold{B} B中第p列与 A \bold{A} A乘,得到 C \bold{C} C的第p列 。

【法三】:按行乘。取 A \bold{A} A中的第1行与 B \bold{B} B乘,得到 C \bold{C} C的第1行,取 A \bold{A} A中的第2行与 B \bold{B} B乘,得到 C \bold{C} C的第2行, ⋯ \cdots ,取 A \bold{A} A中的第m行与 B \bold{B} B乘,得到 C \bold{C} C的第m行。

【法四】:列 × \times ×行。取 A \bold{A} A中的第1列与 B \bold{B} B中的第1行乘,得到一个 m × p m \times p m×p的矩阵,取 A \bold{A} A中的第2列与 B \bold{B} B中的第2行乘,得到一个 m × p m \times p m×p的矩阵, ⋯ \cdots ,取 A \bold{A} A中的第n列与 B \bold{B} B中的第n行乘,得到一个 m × p m \times p m×p的矩阵。将得到的n个矩阵相加,得 C \bold{C} C矩阵。

【法五】:分块相乘。前提是相乘的各分块矩阵之间矩阵行列要匹配。若仔细观察,不难发现方法四和方法五是统一的。
[ A 1 A 2 A 3 A 4 ] [ B 1 B 2 B 3 B 4 ] = [ A 1 B 1 + A 2 B 3 A 1 B 2 + A 2 B 4 A 3 B 1 + A 4 B 3 A 3 B 2 + A 4 B 4 ] \left[ \begin{array}{c|c} \bold{A_{1}}&\bold{A_{2}}\\ \hline \bold{A_{3}}&\bold{A_{4}} \end{array} \right] \left[ \begin{array}{c|c} \bold{B_{1}}&\bold{B_{2}}\\ \hline \bold{B_{3}}&\bold{B_{4}} \end{array} \right]= \left [ \begin{matrix} \bold{A_{1}}\bold{B_{1}}+\bold{A_{2}}\bold{B_{3}}&\bold{A_{1}}\bold{B_{2}}+\bold{A_{2}}\bold{B_{4}}\\ \bold{A_{3}}\bold{B_{1}}+\bold{A_{4}}\bold{B_{3}}&\bold{A_{3}}\bold{B_{2}}+\bold{A_{4}}\bold{B_{4}} \end{matrix} \right ] [A1A3A2A4][B1B3B2B4]=[A1B1+A2B3A3B1+A4B3A1B2+A2B4A3B2+A4B4]

逆矩阵(方阵)

若方阵 A \bold{A} A的逆矩阵 A − 1 \bold{A^{-1}} A1存在,则 A − 1 A = I = A A − 1 \bold{A^{-1}} \bold{A}=\bold{I}=\bold{A} \bold{A^{-1}} A1A=I=AA1

奇异矩阵

奇异矩阵不可逆。
判定方法:
1. A \bold{A} A的行列式为0;
2. A \bold{A} A中存在线性相关的的向量组;
3.方程 A x = 0 \bold{Ax=0} Ax=0存在非0解。因为若 A \bold{A} A的逆矩阵 A − 1 \bold{A^{-1}} A1存在,方程两边乘上 A − 1 \bold{A^{-1}} A1 ,会推出 I = 0 \bold{I=0} I=0 的矛盾。

逆矩阵的求法

思路:
[ 1 3 2 7 ] A [ a c b d ] A − 1 = [ 1 0 0 1 ] I \begin{array}{cccc} \begin{matrix} \begin{bmatrix} 1&3\\ 2&7 \end{bmatrix}\\ \\ \bold{A} \end{matrix}& \begin{matrix} \begin{bmatrix} a&c\\ b&d \end{bmatrix}\\ \\ \bold{A^{-1}} \end{matrix}& \begin{matrix}=\\\\\\ \end{matrix} \begin{matrix} \begin{bmatrix} 1&0\\ 0&1 \end{bmatrix}\\ \\ \bold{I} \end{matrix}& \end{array} [1237]A[abcd]A1=[1001]I
要求出A的逆矩阵,就是要求出a、b、c、d的值,解下面两个方程即可
[ 1 3 2 7 ] [ a b ] = [ 1 0 ] [ 1 3 2 7 ] [ c d ] = [ 0 1 ] \begin{matrix} \begin{bmatrix}1&3\\2&7\end{bmatrix}\begin{bmatrix}a\\b\end{bmatrix}=\begin{bmatrix}1\\0\end{bmatrix}\\\\ \begin{bmatrix}1&3\\2&7\end{bmatrix}\begin{bmatrix}c\\d\end{bmatrix}=\begin{bmatrix}0\\1\end{bmatrix} \end{matrix} [1237][ab]=[10][1237][cd]=[01]
Gauss-Jordan消元法
由于消元法主要是对系数矩阵A和向量b进行操作,不妨把两个向量的b列放到一起,构造增广矩阵
[ 1 3 1 0 2 7 0 1 ] → [ 1 3 1 0 0 1 − 2 1 ] → [ 1 0 7 − 3 0 1 − 2 1 ] \left[\begin{array}{cc:cc} 1&3&1&0\\2&7&0&1 \end{array}\right ]\rightarrow \left[\begin{array}{cc:cc} 1&3&1&0\\0&1&-2&1 \end{array}\right ]\rightarrow \left[\begin{array}{cc:cc} 1&0&7&-3\\0&1&-2&1 \end{array}\right ] [12371001][10311201][10017231]
在将左边系数矩阵 A \bold{A} A化为单位矩阵 I \bold{I} I的同时,右侧矩阵就变成了 A − 1 \bold{A^{-1}} A1
解释:
E [ A I ] = [ I ? ] \bold{E}\begin{bmatrix}\bold{A}&\bold{I}\end{bmatrix}=\begin{bmatrix}\bold{I}&\boxed{?}\end{bmatrix} E[AI]=[I?]
上式中 E \bold{E} E为消元矩阵, A \bold{A} A通过矩阵 E \bold{E} E进行初等行变换,得到了 I \bold{I} I。同时也说明 E A = I \bold{EA=I} EA=I,也就是说 E = A − 1 \bold{E=A^{-1}} E=A1,根据分块矩阵乘法,容易得知 E [ A I ] = [ I E I ] \bold{E}\begin{bmatrix}\bold{A}&\bold{I}\end{bmatrix}=\begin{bmatrix}\bold{I}&\boxed{EI}\end{bmatrix} E[AI]=[IEI],即 E [ A I ] = [ I A − 1 ] \bold{E}\begin{bmatrix}\bold{A}&\bold{I}\end{bmatrix}=\begin{bmatrix}\bold{I}&A^{-1}\end{bmatrix} E[AI]=[IA1]

===================================================

课程资源

  • 主课:bilibli、网易公开课都可以搜到,关键字(麻省理工,线性代数)
  • 配套习题课:bilibli可以搜到,关键字(麻省理工,线性代数,陈莉楠)
  • 教材:Gilbert Strang.Introduction to Linear Algebra
  • 课程官网:http://web.mit.edu/18.06
    \qquad\qquad https://mitmath.github.io/1806/
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值