串联谐振与并联谐振

一、串联谐振

如图1所示为RLC串联电路,输入阻抗可表示为,可以看出,电感L和电容C的频率特性不仅相反(感抗与ω成正比,而容抗与ω成反比),而且直接相减(电抗角差180°)。

可以肯定一定存在一个角频率ω0使感抗和容抗相互完全抵消,即X(jω0)=0。因此,阻抗Z(jω)以ω0为中心,在全频域内随频率变动的情况分为3个频区如下:

ω<ω0

X(jω)<0,ψ(jω)<0

容性区R<∣Z(jω)∣

ω=ω0

X(jω)=0,ψ(jω)=0

电阻性∣Z(jω)∣= R

ω>ω0

X(jω)>0,ψ(jω)>0

感性区R>∣Z(jω)∣

阻抗随频率变化的频响曲线如下图所示

当ω=ω0时,X(jω0)=0,电路的工作状况将出现以下重要特征:

1) ψ(jω0)=0,所以I(jω0)Us(jω0)同相,工程上将电路的这一特殊状况定义为谐振,由于是在RLC串联电路中发生的谐振,又称为串联谐振。由以上分析可知,发生谐振的条件为:Im[Z(jω0)]=X(jω0)= ω0L-1/ω0C。这只有在电感、电容同时存在时,上述条件才能满足。由以上各式可知电路发生谐振的角频率ω0和频率f0为ω0=1LCf0=12πLC

可以看出,RLC串联电路的谐振频率只有一个,而且仅与电路中L、C有关,与电阻R无关。ω0或(f0)称为电路的固有频率。因此,只有当输入信号us的频率与电路的固有频率f0相同时,才能在电路中激起谐振。如果电路中L、C可调,改变电路的固有频率,则RLC串联电路就具有选择任一频率谐振(调谐),或避开某一频率谐振(失谐)的性能。

2) Zjω0=R为最小值,谐振时的电流为极大值

3) 电抗电压Ux(jω0)=0,即有

UX0=jω0L-1ω0CI0=jω0LRUsjω0-j1ω0CRUsjω0=ULjω0+UCjω0=0

因此,L、C串联端口相当于短路,但ULjω0UCjω0都不等于零,两者模值相等且反相,相互完全抵消。根据这一特点,串联谐振又称为电压谐振。

此外,工程上将式中的比值ω0LR=1ω0CR定义为谐振电路的品质因数Q,即

Q=ω0LR=1ω0CR=1RLC

UL(jω0)=UC(jω0)=QUS(jω0)。显然,当Q>1时,电感和电容两端将分别出现比US(jω0)高Q倍的过电压。在高电压的电路系统中(如电力系统),这种过电压非常高,可能会危及系统的安全,必须采取必要的防范措施。但在低电压的电路系统中,如无线电接收系统中,则要利用谐振时出现的过电压来获得较大的输入信号。

4)Q(jω0)=0,即电路吸收的无功功率等于零,有

Qjω0=QLjω0+QCjω0=ω0LI2jω0-1ω0CI2jω0=0

上式表明,电感吸收的无功功率等于电容发出的无功功率,但各自不等于零。电路中储存的电磁能在L和C之间以两倍于谐振频率的频率做周期性的交换,相互完全补偿,自成独立系统,与外源无能量交换。储存的电磁能的总和为一常数,可根据i或us的最大值求得,即

Wjω0=WLjω0+WCjω0=12LI2mjω0=12CU2cmjω0=CQ2U2sjω0

二、并联谐振

并联谐振的定义与串联谐振的定义相同,即端口上的电压与输入电流同相时的工作状况称为谐振。由于发生在并联电路中,所以称为并联谐振。分析方法与RLC串联电路相同,并联谐振的条件为:Im[Y(jω0)]=0

因为Yjω0=G+j(ω0C-1ω0L),可得谐振时的角频率和频率为:

ω0=1LCf0=12πLC

并联谐振时,输入导纳最小,或者说输入阻抗最大,所以谐振时端电压达最大值:Uω0=Z(jω0)IS=RIs

并联谐振时有IL+IC=0,所以并联谐振又称为电流谐振

ILω0=-j1ω0LU=-j1ω0LGIs=-jQIs

ICω0=jω0CU=jω0CGIsjQIs

并联谐振电路的品质因数Q=IL(ω0)Is=Ic(ω0)Is=1ω0LG=ω0CG=1GCL

并联谐振时电路无功功率为0,电感的磁场能量与电容的电场能量彼此相互交换,完全补偿

RLC有源并联谐振电路是一种含有电阻(R)、电感(L)电容(C)元件的电路配置,在特定条件下可以表现出共振特性。这种类型的电路广泛应用于滤波器设计其他信号处理应用中。 ### 关于RLC有源并联谐振电路微分方程推导 对于一个理想的无源RLC并联电路,其行为可以通过二阶线性常系数微分方程来描述。当引入有源组件(例如运算放大器)以形成有源并联谐振电路时,情况会变得稍微复杂一些,但基本原理保持不变。 假设有一个理想电压源Vs(t),它连接到由R, L C组成的并联回路两端。设iL(t), iC(t) 分别表示流过电感L电容C中的电流,则根据基尔霍夫定律(KCL),在任何时刻t都有: $$I_s = I_L + I_C + \frac{V}{R}$$ 其中Is是总输入电流,V是跨接点间的电压。利用电感电容的基本关系: $$\begin{align*} I_L &= \frac{1}{L}\int V dt \\ I_C &= C\frac{dV}{dt} \end{align*}$$ 将这些表达式代入KCL等式,并对结果求导得到关于电压v的一阶微分方程形式。为了简化分析过程,通常采用拉普拉斯变换或者复频域的方法来进行计算,这有助于解决初始条件的问题并且更容易找到系统的特征根。 对于实际应用场景而言,考虑到存在阻尼因素(即内部或外部电阻的影响),最终形成的微分方程将是带有阻尼项的形式。具体来说就是增加了一个速度成比例的衰减因子(-αdv/dt),这里α代表了阻尼比。 因此,完整的RLC有源并联谐振电路的微分方程可能看起来像这样: $$L\ddot{V}(t)+R\dot{V}(t)+\frac{1}{C}V(t)=f(t)$$ 这里的$f(t)$取决于具体的激励函数,比如正弦波形或其他周期性的驱动信号。 ### 应用方面 - **滤波**:由于能够在某个频率范围内提供高增益而其他地方则抑制掉不需要的成分,所以被用来构建带通/带阻滤波器。 - **选频网络**:用于无线电接收机前端的选择性调谐机制 - **振荡器**:通过适当调整参数可以使电路自发地产生持续稳定的输出波形 请注意,以上提供的信息是一个简化的概述。针对更深入的研究技术细节,建议查阅专业的教科书或是学术论文获取最准确的信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值