均值极差图控制上下限_均值控制图的三西格玛控制限是如何得出的?

本文探讨了均值极差图控制限的计算问题,解释了为何不能使用样本总数的三倍标准差作为控制线。文章通过中心极限定理,解释了控制图的3σ原则,指出样本容量、极差与标准差的关系,以及如何正确估计过程的变异大小,以确保控制图的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

有学员提问:应客户要求,加了好几处SPC. 但发现一个问题,用历史数据计算控制线时,若使用SPC手册定义的Xbar—R 公式,控制线特别窄,窄到80%的点超出控制。但是,如果使用25组每组5个样本的总数据计算标准差,再以三倍的标准差为控制线作图,则显示控制图比较好。

1)为什么两种算法得出的控制线差异如此巨大?

2)可不可以使用样本总数计算的三倍标准差来作为控制线?为什么?

88edd15cd425fbbe1745929d505155d8.png

解答如下:

先说结论:不可以使用样本总数计算的三倍标准差来作为控制限。

再说原因。

我们不断地从过程中取样,所取的样越多,样本的均值就越接近于总体均值,所以,我们可以得出一个假设,样本组的均值是围绕着总体均值而上下波动的,并且我们以所抽取的各个样本组的均值的均值来估计该过程的总体均值。

随机抽取的每个样本组,其组内的变异都是不一样的,该变异的大小可以使用多种方法来估计,一种是利用样本组的极差法来估计(

),另一种是利用样本组的标准差法来估计(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值