展开全部
9阶无向图e68a84e8a2ad62616964757a686964616f31333431353431的每个顶点的度数为5或6,至少有6个5度顶点。
解:本题利用了握手定理进行求解。
因为6个n阶无向图边数为n(n-1)/2
又根据握手定理:n(n-1)/2*2=结点数
根据题意可以算的结点数为72
然后假设度数为5的结点数为1,那么度数为6的结点数不为整数,则1舍去;依次类推,度数为5的结点数之少6个 。
扩展资料:
握手定理的推算与应用:
1、顶点的度数
设G=为一无向图,v∈V,称v作为边的端点次数之和为v的度数,简称为度,记做 dG(v),在不发生混淆时,简记为d(v)。设D=为有向图,v∈V,称v作为边的始点次数之和为v的出度,记做(v),简记作d+(v)。
称v作为边的终点次数之和为v的入度,记做(v),简记作d-(v),称d+(v)+d-(v)为v的度数,记做d(v)。
2、握手定理
设G=为任意无向图,V={v1,v2,…,vn},|E|=m,则所有顶点的度数和=2m、
证 G中每条边(包括环)均有两个端点,所以在计算G中各顶点度数之和时,每条边均提供2度,当然,m条边,共提供2m度。
定理14.2(握手定理) 设D=为任意有向图,V={v1,v2,…,vn},|E|=m,
则所有顶点的度数和=2m,且出度=入度=m。