5阶无向完全图_设9阶无向图的每个顶点的度数为5或6,至少有几个5度顶点,求过程及解释,要详细...

展开全部

9阶无向图e68a84e8a2ad62616964757a686964616f31333431353431的每个顶点的度数为5或6,至少有6个5度顶点。

解:本题利用了握手定理进行求解。

因为6个n阶无向图边数为n(n-1)/2

又根据握手定理:n(n-1)/2*2=结点数

根据题意可以算的结点数为72

然后假设度数为5的结点数为1,那么度数为6的结点数不为整数,则1舍去;依次类推,度数为5的结点数之少6个 。

扩展资料:

握手定理的推算与应用:

1、顶点的度数

设G=为一无向图,v∈V,称v作为边的端点次数之和为v的度数,简称为度,记做 dG(v),在不发生混淆时,简记为d(v)。设D=为有向图,v∈V,称v作为边的始点次数之和为v的出度,记做(v),简记作d+(v)。

称v作为边的终点次数之和为v的入度,记做(v),简记作d-(v),称d+(v)+d-(v)为v的度数,记做d(v)。

2、握手定理

设G=为任意无向图,V={v1,v2,…,vn},|E|=m,则所有顶点的度数和=2m、

证 G中每条边(包括环)均有两个端点,所以在计算G中各顶点度数之和时,每条边均提供2度,当然,m条边,共提供2m度。

定理14.2(握手定理) 设D=为任意有向图,V={v1,v2,…,vn},|E|=m,

则所有顶点的度数和=2m,且出度=入度=m。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值