目录
Uninformed Students: Student-Teacher Anomaly Detection With Discriminative Latent Embeddings
Summary
用无异常数据集训练教师网络,在用教师网络去交没有预训练过得学生网络,学生网络尽量与教师网络输出相似的embedding。这样在推理式面对异常图像,学生网络就会与教师网络的embedding差异就会比较大。
采用多个随机初始化的学生网络和一个教师网络,这样的在无异常图像学生网络的embedding就会相似,异常图像由于students是随机初始化的,且teacher并没有在异常样本上教过他们,所以在students之间embedding差异也会比较大。
teacher和students的输入是图片的patch,而不是整张图像,这样,当在某个patch上teacher和students表现差异很大,或者students之间表现差异很大时,就可以认为这个patch为异常,从而定位到了异常的区域。
Research Objective(s)
作者的研究目标是什么?
Background / Problem Statement
研究的背景以及问题陈述:作者需要解决的问题是什么?
Method(s)
训练teancher:
T 完全基于imagenet预训练,并且训练后不再更新参数,T输出D维的特征,该特征具有强语义性(semantically strong descriptors
)。可通过Knowledge distillation或Metric Learning进行训练
训练students:
利用T提取计算训练集中所有patch的均值与标准差,用于数据标准化(作用于T的输出)
构建M个S网络,每个S都为输入图像I输出特征描述符
将S的输出建模为高斯分布,优化以下目标,其中Si表示对像素点(r, c)的预测,yT为T对应Patch的输出,计算L2距离
目的是拉近在正常数据上Teacher和Student的输出
计算异常得分
回归误差 Regression Error (S与T之间的L2距离)
预测不确定性 Predictive Uncertainty (S中的标准差)
综合以上,得到最终分数
Conclusion
我们提出了一种新的框架,用于解决自然图像中无监督异常分割的挑战性问题。异常分数来自学生网络集合的预测方差和回归误差,根据描述性教师网络的嵌入向量进行训练。集成训练可以端到端地执行,并且完全基于无异常的训练数据,而无需事先进行数据注释。我们的方法可以很容易地扩展到检测多个尺度的异常。我们展示了对许多真实世界计算机视觉数据集的当前最先进方法的改进,用于单类分类和异常分割。用于异常检测的评分函数。在训练每个学生收敛后,可以通过对集成的预测分布进行等权来获得每个图像像素的高斯混合。从中,可以通过两种方式获得异常度量: 首先,我们建议计算混合物的平均值 μ(r,c) 相对于教师的代理标签的回归误差: 我们提出了一个新框架,用于解决自然图像中无监督异常分割的挑战性问题。异常分数来自学生网络集合的预测方差和回归误差,根据描述性教师网络的嵌入向量进行训练。集成训练可以端到端地执行,并且完全基于无异常的训练数据,而无需事先进行数据注释。我们的方法可以很容易地扩展到检测多个尺度的异常。我们展示了对许多真实世界计算机视觉数据集的当前最先进方法的改进,用于单类分类和异常分割。