SegAD源码分析 | Supervised Anomaly Detection for Complex Industrial Images

文章目录

  • Supervised Anomaly Detection for Complex Industrial Images
    • Summary
    • Method(s)
      • SegAD
      • Training
    • 代码解析
    • References(optional)

Supervised Anomaly Detection for Complex Industrial Images

Summary

  • 提出了一个新的数据集VAD,训练集包含正常图片和缺陷图片。包含逻辑缺陷,其由于部件放错位置或变形而不是损坏造成的。

  • 提出了segAD,下面三个操作后获取概率,判断图像是否有异常缺陷

Method(s)

SegAD

SegAD 推理由管道中的三个连续阶段组成。

  1. 首先是计算异常图,使用一种或多种异常检测器来生成像素级别的异常图。这些异常检测器可以是任何能够生成异常分数的模型,例如PatchCore、FastFlow、RD4AD或EfficientAD。以及一些监督异常检测器(如DevNet和DRA)
  2. 接下来是从各个分段的异常图中计算简单统计量。
  3. 最后,将获得的统计量以及(可选的)分类器得分用作 BRF 分类器的输入特征,BRF 分类器将提供最终结果。
  • 将 x 表示为 2D 像素坐标向量

  • 将K表示为所使用的像素级异常检测器的数量,并将它们标记为函数 f k ( I ) : I → R W , H , k ∈ { 1 , … , K } f_k(I):I\rightarrow\mathbb{R}^{W,H},k\in\{1,\ldots,K\} fk(I):IRW,H,k{ 1,,K}

  • 有监督分类器是一个函数 g ( I ) : R W , H → R . g(I):\mathbb{R}^{W,H}\to\mathbb{R}. g(I):RW,HR.

  • 引入一组 L 互斥段 S = { s 1 , … , s L } S=\{s_1,\dots,s_L\} S={ s1,,sL},其中 s l ∈ [ 0 , 1 ] W , H s_l\in\begin{bmatrix}0,1\end{bmatrix}^{W,H} sl[

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值