文章目录
- Supervised Anomaly Detection for Complex Industrial Images
-
- Summary
- Method(s)
-
- SegAD
- Training
- 代码解析
- References(optional)
Supervised Anomaly Detection for Complex Industrial Images
Summary
-
提出了一个新的数据集VAD,训练集包含正常图片和缺陷图片。包含逻辑缺陷,其由于部件放错位置或变形而不是损坏造成的。
-
提出了segAD,下面三个操作后获取概率,判断图像是否有异常缺陷
Method(s)
SegAD
SegAD 推理由管道中的三个连续阶段组成。
- 首先是计算异常图,使用一种或多种异常检测器来生成像素级别的异常图。这些异常检测器可以是任何能够生成异常分数的模型,例如PatchCore、FastFlow、RD4AD或EfficientAD。以及一些监督异常检测器(如DevNet和DRA)
- 接下来是从各个分段的异常图中计算简单统计量。
- 最后,将获得的统计量以及(可选的)分类器得分用作 BRF 分类器的输入特征,BRF 分类器将提供最终结果。
-
将 x 表示为 2D 像素坐标向量
-
将K表示为所使用的像素级异常检测器的数量,并将它们标记为函数 f k ( I ) : I → R W , H , k ∈ { 1 , … , K } f_k(I):I\rightarrow\mathbb{R}^{W,H},k\in\{1,\ldots,K\} fk(I):I→RW,H,k∈{ 1,…,K}
-
有监督分类器是一个函数 g ( I ) : R W , H → R . g(I):\mathbb{R}^{W,H}\to\mathbb{R}. g(I):RW,H→R.,
-
引入一组 L 互斥段 S = { s 1 , … , s L } S=\{s_1,\dots,s_L\} S={ s1,…,sL},其中 s l ∈ [ 0 , 1 ] W , H s_l\in\begin{bmatrix}0,1\end{bmatrix}^{W,H} sl∈[