bert4keras、transformers 加载预训练bert模型、句向量cls,字向量提取;tokenizer使用

本文介绍了如何利用bert4keras和transformers库加载预训练的BERT模型,包括分词器Tokenizer的使用,获取句向量和字向量,以及在不同深度学习框架中的应用。同时提供了t5-pegasus模型的加载示例和Hugging Face Hub上的BERT模型读取方法。
摘要由CSDN通过智能技术生成

1、bert4keras

分词器 Tokenizer
在这里插入图片描述
在这里插入图片描述

from bert4keras.models import build_transformer_model
from bert4keras.tokenizers import Tokenizer
import numpy as np

config_path = '/Users/lonng/Desktop/v+/xl/chinese_L-12_H-768_A-12/bert_config.json'
checkpoint_path = '/Users/lonng/Desktop/v+/xl/chinese_L-12_H-768_A-12/bert_model.ckpt'
dict_path = '/Users/lonng/Desktop/v+/xl/chinese_L-12_H-768_A-12/vocab.txt'

tokenizer = Tokenizer(dict_path, do_lower_case=True)  # 建立分词器
model =
评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

loong_XL

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值